期刊文献+

Grain boundary engineering for enhancing intergranular damage resistance of ferritic/martensitic steel P92

下载PDF
导出
摘要 Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期186-199,共14页 核技术(英文)
基金 supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05) Projects of International Cooperation and Exchanges NSFC(No.51111140389) the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
  • 相关文献

参考文献1

二级参考文献27

  • 1M. Diener and M.O. Speidel, Mater. Manuf. Processes 19 (2004) 111. 被引量:1
  • 2Z.Z. Yuan, Q.X. Dai, X.N. Cheng, K.M. Chen and W.W. Xu, Mater. Sci. Eng. A 475 (2008) 202. 被引量:1
  • 3H. H~nninen, J. Romu, R. Ilola, J. Tervo and A. Laiti- nen, J. Mater. Process. Technol. 117 (2001) 424. 被引量:1
  • 4D. L6pez, N.A. Falleiros and A.P. Tschiptschin, Wear 263 (2007) 347. 被引量:1
  • 5G. Stein, I. Hucklenbroich and M. Wagner, Mater. Sci. Forum 318-320 (1999) 167. 被引量:1
  • 6M. Ogawa, K. Hiraoka, Y. Katada, M. Sagara and S. Tsukamoto, ISIJ Int. 42 (2002) 1391. 被引量:1
  • 7P.H. Pumphrey, In: G.A. Chadwick and D.A. Smith(Eds.), Special High Angle Boundaries, Grain Bound- ary Structure and Properties, Academic Press, Lon- don, 1976, pp.13-19. 被引量:1
  • 8X.Y. Fang, K. Zhang, H. Guo, W.G. Wang and B.X. Zhou, Mater. Sci. Eng. A 487 (2008) 7. 被引量:1
  • 9X.Y. Fang, W.G. Wang, Z.X. Cai, C.X. Qin and B.X. Zhou, Mater. Sci. Eng. A 527 (2010) 1571. 被引量:1
  • 10C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen and N. Wang, Corros. Sci. 53 (2011) 1880. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部