Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but ...Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.展开更多
For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but f...For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.展开更多
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere...Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.展开更多
Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly impro...Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly improves the processing efficiency,accuracy,and flexibility,and presents wider prospects over traditional mechanical technologies for machining three-dimensional,hard,brittle,or transparent materials.In this review,we introduce:(1)The role of spatial light modulation technology in the development of femtosecond laser manufacturing;(2)the structured light generated by spatial light modulation and its generation methods;and(3)representative applications of spatial-light-modulated femtosecond laser manufacturing,including aberration correction,parallel processing,focal field engineering,and polarization control.Finally,we summarize the present challenges in the field and possible future research.展开更多
The characteristics of hot electrons produced by p-polarized femtosecond laser-solid interactions are studied. The experimental results show that the outgoing electrons are mainly emitted in three directions: along th...The characteristics of hot electrons produced by p-polarized femtosecond laser-solid interactions are studied. The experimental results show that the outgoing electrons are mainly emitted in three directions: along the target surface, the normal direction and the laser backward direction. The electrons flowing along the target surface are due to the confinement of the electrostatic field and the surface magnetic field, while the electrons in the normal direction due to the resonant absorption.展开更多
Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailore...Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels.展开更多
Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0 - 13.0x10(13) W/cm(2). A time of flight mass spectrometer was employed to detect th...Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0 - 13.0x10(13) W/cm(2). A time of flight mass spectrometer was employed to detect the ion signals. Parent ions dominated at lower laser intensities. Fragmentation of the parent ions increases with increasing laser intensity and molecular size. The fragmentation mechanism was discussed.展开更多
Photoionization and photodissociation of CH3CN were studied by a linear time of flight mass spectrometer coupled with 800 nm, 50 fs laser pulses at intensities of 6.3×1013-1.2×1014 W/cm2. The laser power dep...Photoionization and photodissociation of CH3CN were studied by a linear time of flight mass spectrometer coupled with 800 nm, 50 fs laser pulses at intensities of 6.3×1013-1.2×1014 W/cm2. The laser power dependences for principal ions CH3CN+, CH2CN+, CHCN+ and CCN+ were measured, which are consistent with the numbers of photons required to produce the ions via multiphoton ionization and dissociation. The results show that eight-photon non-resonant multiphoton ionization is the main photoionization mechanism of the parent ion CH3CN+, while the fragment ions were produced through the dissociation of the molecules in the super-excited states.展开更多
Methanol was irradiated by 80 fs laser pulse, intensity range of 1013-1014 W/cm2. A TOF-mass spectrometer was coupled to the laser system and used to detect the ions produced. The parent ions CH3OH+ appeared firstly a...Methanol was irradiated by 80 fs laser pulse, intensity range of 1013-1014 W/cm2. A TOF-mass spectrometer was coupled to the laser system and used to detect the ions produced. The parent ions CH3OH+ appeared firstly at the laser intensity of 1.4 ×1013 W/cm2. While the laser intensity was gradually increased, the parent ions were dissociated and the primary ions CH2OH+ were given as verified from the irradiation of deuterated methanol (CH3OD) showing the C-H bond cracking firstly. While the laser intensity was further increased to 2.0 ×1013 W/cm2, the C-O bonds of the parent ions also broke to give CH3+. When the laser intensity was higher, smaller fragment ions like CH+, C+, OH+ and O+ also appeared. Among the fragment ions, only H+ ion yield had anisotropic angular distribution dependence on the laser polarization vector in the dissociation of methanol. All the experimental observations show that the dissociation of methanol proceeds through stepwise mechanism but not Coulomb explosion.展开更多
基金This study was supported by funding from the Ministry of Education,Culture,Sports,Science,and Technology of Japan:KAKENHI Grant-in-Aid for Scientific Research No.23225006,Nanotechnology Platform(Hokkaido University)and the Low-Carbon Research Network of Japan.
文摘Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.
基金National Key R&D Program of China(2016YFA0301302,2018YFB1107205)National Natural Science Foundation of China(NSFC)(11474010,11627803,61590933)
文摘For crystals, depressed cladding waveguides have advantages such as preservation of the spectroscopic as well as non-linear properties and the capability to guide both horizontal and vertical polarization modes, but fabrication is always quite time consuming. In addition, it is usually difficult to couple modes propagating in different depressed cladding waveguides through evanescent field overlap, so it is often required to dynamically reconfigure photonic waveguide devices using external fields for classical or quantum applications. Here, we experimentally demonstrate the single-scan femtosecond laser transverse writing of depressed cladding waveguides to form a 2 × 2 directional coupler inside lithium niobate crystal, which is integrated with two deeply embedded microelectrodes on both sides of the interaction region to reconfigure the coupling. By focal field engineering of the femtosecond laser, we specially generate a three-dimensional longitudinally oriented ring-shaped focal intensity profile composed of 16 discrete spots to simultaneously write the entire cladding region. The fabricated waveguides exhibit good single guided modes in two orthogonal polarizations at 1550 nm. By applying voltage to the deeply embedded microelectrodes fabricated with the femtosecond laser ablation followed by selective electroless plating, we successfully facilitate the light coupling from the input arm to the cross arm and thus actively tune the splitting ratio. These results open new important perspectives in the efficient fabrication of reconfigurable complex three-dimensional devices in crystals based on depressed cladding waveguides.
基金This work is supported by Academic Research Fund Tier 2,Ministry of Education-Singapore(MOE2019-T2-2-147)T.C.acknowledges support from the National Key Research and Development Program of China(2019YFA0709100,2020YFA0714504).
文摘Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
基金This work was supported by the National Key R&D Program of China(Grant No.2021YFB2802000)the National Natural Science Foundation of China(Grant Nos.61827826,62175086,62131018)+1 种基金the Natural Science Foundation of Jilin Province(Grant No.20220101107JC)the Education Department of Jilin Province(Grant No.JJKH20221003KJ).
文摘Since the invention of lasers,spatial-light-modulated laser processing has become a powerful tool for various applications.It enables multidimensional and dynamic modulation of the laser beam,which significantly improves the processing efficiency,accuracy,and flexibility,and presents wider prospects over traditional mechanical technologies for machining three-dimensional,hard,brittle,or transparent materials.In this review,we introduce:(1)The role of spatial light modulation technology in the development of femtosecond laser manufacturing;(2)the structured light generated by spatial light modulation and its generation methods;and(3)representative applications of spatial-light-modulated femtosecond laser manufacturing,including aberration correction,parallel processing,focal field engineering,and polarization control.Finally,we summarize the present challenges in the field and possible future research.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10374115, 10374116 and 10376160) the National High-Tech ICF Program of China, and the National Key Laboratory of High Temperature and High Density Plasma.
文摘The characteristics of hot electrons produced by p-polarized femtosecond laser-solid interactions are studied. The experimental results show that the outgoing electrons are mainly emitted in three directions: along the target surface, the normal direction and the laser backward direction. The electrons flowing along the target surface are due to the confinement of the electrostatic field and the surface magnetic field, while the electrons in the normal direction due to the resonant absorption.
基金Project supported by the National Natural Science Fundation of China (Grant Nos.92050105,92250301,and 12227807)。
文摘Besides the diverse investigations on the interactions between intense laser fields and molecular systems,extensive research has been recently dedicated to exploring the response of nanosystems excited by well-tailored femtosecond laser fields.Due to the fact that nanostructures hold peculiar effects when illuminated by laser pulses,the underlying mechanisms and the corresponding potential applications can make significant improvements in both fundamental research and development of novel techniques.In this review,we provide a summarization of the strong field ionization occurring on the surface of nanosystems.The molecules attached to the nanoparticle surface perform as the precursor in the ionization and excitation of the whole nanosystem,the fundamental processes of which are yet to be discovered.We discuss the influence on nanoparticle constituents,geometric shapes and sizes,as well as the specific waveforms of the excitation laser fields.The intriguing characteristics observed in surface ion emission reflect how enhanced near field affects the localized ionizations and nanoplasma expansions,thereby paving the way for further precision controls on the light-and-matter interactions in the extreme spatial temporal levels.
文摘Photodissociation of cyclopentanone (C5H8O) and cyclohexanone (C6H10O) was studied with 800nm, 50fs laser pulse at intensities of 5.0 - 13.0x10(13) W/cm(2). A time of flight mass spectrometer was employed to detect the ion signals. Parent ions dominated at lower laser intensities. Fragmentation of the parent ions increases with increasing laser intensity and molecular size. The fragmentation mechanism was discussed.
文摘Photoionization and photodissociation of CH3CN were studied by a linear time of flight mass spectrometer coupled with 800 nm, 50 fs laser pulses at intensities of 6.3×1013-1.2×1014 W/cm2. The laser power dependences for principal ions CH3CN+, CH2CN+, CHCN+ and CCN+ were measured, which are consistent with the numbers of photons required to produce the ions via multiphoton ionization and dissociation. The results show that eight-photon non-resonant multiphoton ionization is the main photoionization mechanism of the parent ion CH3CN+, while the fragment ions were produced through the dissociation of the molecules in the super-excited states.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29973052) the Ministry of Science & Technology of China.
文摘Methanol was irradiated by 80 fs laser pulse, intensity range of 1013-1014 W/cm2. A TOF-mass spectrometer was coupled to the laser system and used to detect the ions produced. The parent ions CH3OH+ appeared firstly at the laser intensity of 1.4 ×1013 W/cm2. While the laser intensity was gradually increased, the parent ions were dissociated and the primary ions CH2OH+ were given as verified from the irradiation of deuterated methanol (CH3OD) showing the C-H bond cracking firstly. While the laser intensity was further increased to 2.0 ×1013 W/cm2, the C-O bonds of the parent ions also broke to give CH3+. When the laser intensity was higher, smaller fragment ions like CH+, C+, OH+ and O+ also appeared. Among the fragment ions, only H+ ion yield had anisotropic angular distribution dependence on the laser polarization vector in the dissociation of methanol. All the experimental observations show that the dissociation of methanol proceeds through stepwise mechanism but not Coulomb explosion.