Sodium-ion batteries(SIBs),as highly promising alternatives to lithium-ion batteries(LIBs),can be widely used in a variety of next-generation energy storage systems.However,the current commercial graphite anodes of LI...Sodium-ion batteries(SIBs),as highly promising alternatives to lithium-ion batteries(LIBs),can be widely used in a variety of next-generation energy storage systems.However,the current commercial graphite anodes of LIBs could not intercalate sodium ions to appreciable extent,and the electrochemical irreversibility hinders further application.Searching for a suitable anode material is a critical issue for the successful development of SIBs.Herein,we report a convenient,fast,and large-scale preparation method of mesoporous FeS_(2) nanorods.Our specially designed one-dimensional mesoporous structure of FeS_(2) takes full advantage of ultra-high strain relaxation as well as fast Na^(+)transport rate arising from microstructural characteristics.As a result,the mesoporous FeS_(2) nanorods exhibited excellent sodium storage performance.The discharge capacity was retained at 711.1 mAh·g^(-1) after 450 cycles at a current density of 1000 mA·g^(-1).The special microstructure and superior performance of mesoporous FeS_(2) nanorods represent a critical step for transition metal sulfides electrode materials toward practical SIBs application.展开更多
FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron ...FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.展开更多
Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their i...Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their inherent low conductivity and obvious volume change during cycling.Herein,a flexible etchassisted sulfidation strategy is reported.According to the strategy,the multicore-shell(MCS) nanocapsule structure is constructed,and then mesoporous FeS2 nanoparticles are encapsulated in the hollow carbon shell with adjustable interior space.The product,MCS-FeS2@C-20,not only features optimized inner space,but also delivers a large reversible capacity(519 mAh g^(-1) at a current density of 50 mA g^(-1)),good rate capability(107 mAh g^(-1) at a high current density of 5 A g^(-1)) and excellent cycling stability(capacity retention rate of 84.2% over 500 cycles at 0.5 A g^(-1)),making it the promising anode material for PIBs.Notably,potassium-ion full cells(MCS-FeS_(2)@C-20//K_(0.4)CoO_(2)) also show an improved potassium storage performance.展开更多
Metal sulfides have been regarded as promising anodes for potassium-ion batteries(PIBs)due to their high theoretical capacities,while the performance is limited by their intrinsic poor conductivity and large volume fl...Metal sulfides have been regarded as promising anodes for potassium-ion batteries(PIBs)due to their high theoretical capacities,while the performance is limited by their intrinsic poor conductivity and large volume fluctuation during the insertion/extraction of large potassium ion.Herein,the battery performance of iron sulfide anode is significantly enhanced through yolk-shell(Y-S)structure design and nickel doping,aiming to realize good structure stability and superior electron/ion transportation.For potassium storage,as-prepared Y-S Ni-FeS_(2)@C shows excellent cyclic performance and sustains high capacities of 328 mA h g^(-1)after 100 cycles at 0.2 A g^(-1)and 226 mA h g^(-1)after 1000 cycles at 1 A g^(-1).Especially,it displays a superior rate capacity of 200 mA h g^(-1)at 20 A g^(-1),higher than that of Y-S FeS_(2)@C and most as-reported metal sulfide anodes for PIBs.The experimental analysis and theoretical calculation illuminate the effect of Ni-doping on decreasing the particle size of iron sulfide and enhancing the ion/electron transport ability,thus accounting for the exceptional rate capability of Y-S Ni-FeS_(2)@C composite.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(Nos.21905239 and U1910208)the Natural Science Foundation of Shanxi Province of China(Nos.201901D211265,201901D211257,201901D111137 and 201901D211208)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Nos.2019L0609 and 2019L0605).
文摘Sodium-ion batteries(SIBs),as highly promising alternatives to lithium-ion batteries(LIBs),can be widely used in a variety of next-generation energy storage systems.However,the current commercial graphite anodes of LIBs could not intercalate sodium ions to appreciable extent,and the electrochemical irreversibility hinders further application.Searching for a suitable anode material is a critical issue for the successful development of SIBs.Herein,we report a convenient,fast,and large-scale preparation method of mesoporous FeS_(2) nanorods.Our specially designed one-dimensional mesoporous structure of FeS_(2) takes full advantage of ultra-high strain relaxation as well as fast Na^(+)transport rate arising from microstructural characteristics.As a result,the mesoporous FeS_(2) nanorods exhibited excellent sodium storage performance.The discharge capacity was retained at 711.1 mAh·g^(-1) after 450 cycles at a current density of 1000 mA·g^(-1).The special microstructure and superior performance of mesoporous FeS_(2) nanorods represent a critical step for transition metal sulfides electrode materials toward practical SIBs application.
基金supported by the National Key Research and Development Program(No.2021YFB2400300)the National Natural Science Foundation of China(No.52177214)supported by China Fujian Energy Devices Science and Technology Innovation Laboratory Open Fund(No.21C-OP202211)。
文摘FeS_(2) shows significant potential as cathode material for all-solid-state lithium batteries(ASSLBs)due to its high theoretical specific capacity,low cost,and environmental friendliness.However,the poor ion/electron conductivity and large volume variation effect of FeS_(2) inhibit its practical applications.Here,the influence of particle size of FeS_(2) on the corresponding sulfide-based solid-state batteries is carefully investigated by tuning FeS_(2) size.Moreover,low operating temperature is chosen to mitigate the large volume changes during cycling in the battery.S-FeS_(2) with smaller particle sizes delivers superior electrochemical performances than that of the larger L-FeS_(2) in Li_(5.5)PS_(4.5)Cl_(1.5)-based ASSLBs under different operating temperatures.S-FeS_(2) shows stable discharge capacities during 50 cycles with a current density of 0.1 m A/cm^(2)under -20℃.When the current density rises to 1.0 m A/cm^(2),it delivers an initial discharge capacity of 146.9 m Ah/g and maintains 63% of the capacity after 100 cycles.This work contributes to constructing ASSLBs enables excellent electrochemical performances under extreme operating temperatures.
基金supported by the National Natural Science Foundation of China (22179063, 22075147)。
文摘Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their inherent low conductivity and obvious volume change during cycling.Herein,a flexible etchassisted sulfidation strategy is reported.According to the strategy,the multicore-shell(MCS) nanocapsule structure is constructed,and then mesoporous FeS2 nanoparticles are encapsulated in the hollow carbon shell with adjustable interior space.The product,MCS-FeS2@C-20,not only features optimized inner space,but also delivers a large reversible capacity(519 mAh g^(-1) at a current density of 50 mA g^(-1)),good rate capability(107 mAh g^(-1) at a high current density of 5 A g^(-1)) and excellent cycling stability(capacity retention rate of 84.2% over 500 cycles at 0.5 A g^(-1)),making it the promising anode material for PIBs.Notably,potassium-ion full cells(MCS-FeS_(2)@C-20//K_(0.4)CoO_(2)) also show an improved potassium storage performance.
基金supported by the Science and Technology Planning Project of Fujian Province(2021J01151)CAS Key Laboratory of Design and Assembly of Functional Nanostructures(2013DP173231)+1 种基金the Award Program for Fujian Minjiang Scholar Professorship(2021)the Start-up Funding from FJNU。
文摘Metal sulfides have been regarded as promising anodes for potassium-ion batteries(PIBs)due to their high theoretical capacities,while the performance is limited by their intrinsic poor conductivity and large volume fluctuation during the insertion/extraction of large potassium ion.Herein,the battery performance of iron sulfide anode is significantly enhanced through yolk-shell(Y-S)structure design and nickel doping,aiming to realize good structure stability and superior electron/ion transportation.For potassium storage,as-prepared Y-S Ni-FeS_(2)@C shows excellent cyclic performance and sustains high capacities of 328 mA h g^(-1)after 100 cycles at 0.2 A g^(-1)and 226 mA h g^(-1)after 1000 cycles at 1 A g^(-1).Especially,it displays a superior rate capacity of 200 mA h g^(-1)at 20 A g^(-1),higher than that of Y-S FeS_(2)@C and most as-reported metal sulfide anodes for PIBs.The experimental analysis and theoretical calculation illuminate the effect of Ni-doping on decreasing the particle size of iron sulfide and enhancing the ion/electron transport ability,thus accounting for the exceptional rate capability of Y-S Ni-FeS_(2)@C composite.