期刊文献+

Synthesis of multicore-shell FeS_(2)@C nanocapsules for stable potassiumion batteries 被引量:1

下载PDF
导出
摘要 Transition-metal sulfides are widely used as anodes for potassium-ion batteries(PIBs) due to their low cost and high theoretical capacity.The practical application of such materials,however,is still impeded by their inherent low conductivity and obvious volume change during cycling.Herein,a flexible etchassisted sulfidation strategy is reported.According to the strategy,the multicore-shell(MCS) nanocapsule structure is constructed,and then mesoporous FeS2 nanoparticles are encapsulated in the hollow carbon shell with adjustable interior space.The product,MCS-FeS2@C-20,not only features optimized inner space,but also delivers a large reversible capacity(519 mAh g^(-1) at a current density of 50 mA g^(-1)),good rate capability(107 mAh g^(-1) at a high current density of 5 A g^(-1)) and excellent cycling stability(capacity retention rate of 84.2% over 500 cycles at 0.5 A g^(-1)),making it the promising anode material for PIBs.Notably,potassium-ion full cells(MCS-FeS_(2)@C-20//K_(0.4)CoO_(2)) also show an improved potassium storage performance.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期126-132,I0004,共8页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China (22179063, 22075147)。
  • 相关文献

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部