研究了一类新的非线性时滞Volterra-Fredholm型积分不等式.该不等式把文献[Ma,QH,Pecaric,J:Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities.Nonlinear Anal.69(2008)393-407]...研究了一类新的非线性时滞Volterra-Fredholm型积分不等式.该不等式把文献[Ma,QH,Pecaric,J:Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities.Nonlinear Anal.69(2008)393-407]中的函数σ_1(s)推广成函数w(u(s))f(s),其中w(u(s))是未知函数与非线性函数的复合函数.利用变量替换、放大及常量与变量的辩证关系等方法给出了该不等式中未知函数的估计.最后,用所得结果给出了一类积分方程解的估计.展开更多
基金supported by the National Natural Science Foundation of China(11161018)the NSF of Guangxi Zhuang Autonomous Region(2012GXNSFAA053009)+3 种基金the NSF of Guangdong Province(s2013010013385)the Science Innovation Project of Department of Education of Guangdong province(2013KJCX0125)the NSFP of Zhanjiang Normal University(ZL1303)the Innovation and Developing School Project of Department of Education of Guangdong province(2014KZDXM065)
文摘研究了一类新的非线性时滞Volterra-Fredholm型积分不等式.该不等式把文献[Ma,QH,Pecaric,J:Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities.Nonlinear Anal.69(2008)393-407]中的函数σ_1(s)推广成函数w(u(s))f(s),其中w(u(s))是未知函数与非线性函数的复合函数.利用变量替换、放大及常量与变量的辩证关系等方法给出了该不等式中未知函数的估计.最后,用所得结果给出了一类积分方程解的估计.