In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongo...In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application.展开更多
Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallant...Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallantoic membrane was characterized in pregnant sows(PS)during early gestation(d 18 and 24 of gestation)and in the endometrium of non-pregnant sows(NPS)during the same days using LC-MS/MS analysis.The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks,respectively.Results Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS,respectively;of these,1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS,respectively.In addition,we iden-tified 3,968 proteins in the extraembryonic membranes of PS.Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization,suggesting they dominated the moment of endometrial remodeling,implantation and adhesion of the lining epithelia.Data are available via Pro-teomeXchange with identifier PXD042565.Conclusion This is the first in-depth proteomic characterization of the endometrium and extraembryonic mem-branes during weeks 3 to 4 of gestation;data that contribute to the molecular understanding of the dynamic environ-ment during this critical period,associated with the majority of pregnancy losses.展开更多
Recently we have established a new culture condition enabling the derivation of extended pluripotent stem(EPS)cells,which,compared to conventional pluripotent stem cells,possess superior developmental potential and ge...Recently we have established a new culture condition enabling the derivation of extended pluripotent stem(EPS)cells,which,compared to conventional pluripotent stem cells,possess superior developmental potential and germline competence.However,it remains unclear whether this condition permits derivation of EPS cells from mouse strains that are refractory or non-permissive to pluripotent cell establishment.Here,we show that EPS cells can be robustly generated from non-permissive NOD-sc/d Il2rg 1 mice through de novo derivation from blastocysts.Furthermore,these cells can also be efficiently generated by chemical reprogramming from embryonic NOD-sc/d II2rg-/-fibroblasts.NOD-sc/d II2rg-/-EPS cells can be expanded for more than 20 passages with genomic stability and can be genetically modified through gene targeting.Notably,these cells contribute to both embryonic and extraembryonic lineages in vivo.More importantly,they can produce chimeras and integrate into the E13.5 genital ridge.Our study demonstrates the feasibility of generating EPS cells from refractory mouse strains,which could potentially be a general strategy for deriving mouse pluripotent cells.The generation of NOD-sc/d II2rg-/-Yaqin Du and Ting Wang contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0558-z)contains supplementary material,which is available to authorized users.EPS cell lines permits sophisticated genetic modification in NOD-scid II2rg-/-mice,which may greatly advance the optimization of humanized mouse models for biomedical applications.展开更多
Portal hypertension in the rat by triple partial portal vein ligation produces an array of splanchnic and systemic disorders, including hepatic steatosis. In the current review these alterations are considered compone...Portal hypertension in the rat by triple partial portal vein ligation produces an array of splanchnic and systemic disorders, including hepatic steatosis. In the current review these alterations are considered components of a systemic inflammatory response that would develop through three overlapping phenotypes: The neurogenic, the immune and the endocrine. These three inflammatory phenotypes could resemble the functions expressed during embryonic development of mammals. In turn, the inflammatory phenotypes would be represented in the embryo by two functional axes, that is, a coelomic-amniotic axis and a trophoblastic yolk-sac or vitelline axis. In this sense, the inflammatory response developed after triple partial portal vein ligation in the rat would integrate both functional embryonic axes on the liver interstitial space of Disse. If so, this fact would favor the successive development of steatosis, steatohepatitis and fibrosis. Firstly, these recapitulated embryonic functions would produce the evolution of liver steatosis. In this way, this fat liver could represent a yolk-sac-like in portal hypertensive rats. After that, the systemic recapitulation of these embryonic functions in experimental prehepatic portal hypertension would consequently induce a gastrulationlike response in which a hepatic wound healing reaction or fibrosis occur. In conclusion, studying the mechanisms involved in embryonic development could provide key results for a better understanding of the nonalcoholic fatty liver disease etiopathogeny.展开更多
基金National Natural Science Foundation of China,No.81271122 and No.81371122Shanghai Leading Academic Discipline Project,No.S30206
文摘In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application.
基金This research was funded by the MCIN/AEI/https://doi.org/10.13039/501100011033,ERDF(PID2022137645OB-I00),Madrid,SpainFundacion Seneca(19892/GERM/15),Murcia,Spainthe Swedish Research Council FORMAS(Project 2019-00288),Stockholm,Sweden.
文摘Background Proteome characterization of the porcine endometrium and extraembryonic membranes is important to understand mother-embryo cross-communication.In this study,the proteome of the endometrium and cho-rioallantoic membrane was characterized in pregnant sows(PS)during early gestation(d 18 and 24 of gestation)and in the endometrium of non-pregnant sows(NPS)during the same days using LC-MS/MS analysis.The UniProtKB database and ClueGO were used to obtain functional Gene Ontology annotations and biological and functional networks,respectively.Results Our analysis yielded 3,254 and 3,457 proteins identified in the endometrium of PS and NPS,respectively;of these,1,753 being common while 1,501 and 1,704 were exclusive to PS and NPS,respectively.In addition,we iden-tified 3,968 proteins in the extraembryonic membranes of PS.Further analyses of function revealed some proteins had relevance for the immune system process and biological adhesion in endometrium while the embryonic chorion displayed abundance of proteins related to cell adhesion and cytoskeletal organization,suggesting they dominated the moment of endometrial remodeling,implantation and adhesion of the lining epithelia.Data are available via Pro-teomeXchange with identifier PXD042565.Conclusion This is the first in-depth proteomic characterization of the endometrium and extraembryonic mem-branes during weeks 3 to 4 of gestation;data that contribute to the molecular understanding of the dynamic environ-ment during this critical period,associated with the majority of pregnancy losses.
基金the National Key Research and Development Program of China(2016YFA01001002017YFA0103000)+4 种基金the National Natural Science Foundation of China(Grant Nos.31730059 and 31521004)the Guangdong Innovative and En trepreneurial Research Team Program(2014ZT05S216)the Science and Technology Planning Project of Guangdong Province,China(2014B020226001 and 2016B030232001)the Science and Technology Program of Guangzhou,China(201508020001)National Natural Science Foundation of China(Grant No.31571052).
文摘Recently we have established a new culture condition enabling the derivation of extended pluripotent stem(EPS)cells,which,compared to conventional pluripotent stem cells,possess superior developmental potential and germline competence.However,it remains unclear whether this condition permits derivation of EPS cells from mouse strains that are refractory or non-permissive to pluripotent cell establishment.Here,we show that EPS cells can be robustly generated from non-permissive NOD-sc/d Il2rg 1 mice through de novo derivation from blastocysts.Furthermore,these cells can also be efficiently generated by chemical reprogramming from embryonic NOD-sc/d II2rg-/-fibroblasts.NOD-sc/d II2rg-/-EPS cells can be expanded for more than 20 passages with genomic stability and can be genetically modified through gene targeting.Notably,these cells contribute to both embryonic and extraembryonic lineages in vivo.More importantly,they can produce chimeras and integrate into the E13.5 genital ridge.Our study demonstrates the feasibility of generating EPS cells from refractory mouse strains,which could potentially be a general strategy for deriving mouse pluripotent cells.The generation of NOD-sc/d II2rg-/-Yaqin Du and Ting Wang contributed equally to this work.Electronic supplementary material The online version of this article(https://doi.org/10.1007/s13238-018-0558-z)contains supplementary material,which is available to authorized users.EPS cell lines permits sophisticated genetic modification in NOD-scid II2rg-/-mice,which may greatly advance the optimization of humanized mouse models for biomedical applications.
基金Supported by FICYT FC--15--GRUPIN 14--088Alfonso Martin Escudero Foundation
文摘Portal hypertension in the rat by triple partial portal vein ligation produces an array of splanchnic and systemic disorders, including hepatic steatosis. In the current review these alterations are considered components of a systemic inflammatory response that would develop through three overlapping phenotypes: The neurogenic, the immune and the endocrine. These three inflammatory phenotypes could resemble the functions expressed during embryonic development of mammals. In turn, the inflammatory phenotypes would be represented in the embryo by two functional axes, that is, a coelomic-amniotic axis and a trophoblastic yolk-sac or vitelline axis. In this sense, the inflammatory response developed after triple partial portal vein ligation in the rat would integrate both functional embryonic axes on the liver interstitial space of Disse. If so, this fact would favor the successive development of steatosis, steatohepatitis and fibrosis. Firstly, these recapitulated embryonic functions would produce the evolution of liver steatosis. In this way, this fat liver could represent a yolk-sac-like in portal hypertensive rats. After that, the systemic recapitulation of these embryonic functions in experimental prehepatic portal hypertension would consequently induce a gastrulationlike response in which a hepatic wound healing reaction or fibrosis occur. In conclusion, studying the mechanisms involved in embryonic development could provide key results for a better understanding of the nonalcoholic fatty liver disease etiopathogeny.