Nanoparticles and nanowires of LaPO 4: Eu phosphors were synthesized by hydrothermal method. Their luminescent properties including electronic transition, surface effect, and temperature-dependent luminescent charact...Nanoparticles and nanowires of LaPO 4: Eu phosphors were synthesized by hydrothermal method. Their luminescent properties including electronic transition, surface effect, and temperature-dependent luminescent characteristics were systemically studied and compared to the bulk powders. It can be concluded that in comparison with the bulk powders, the fluorescence intensity decreases in nanoparticles and nanowires, while the lifetime increases, indicating that the radiative transition rate decreases. The nonradiative transition rate in nanowires decreases than that in nanoparticles due to its decreased surface to volume ratio. The temperature-dependent experiments indicate that the thermal quenching in nanopowders becomes weaker than that in the bulk powders.展开更多
Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes ...Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS) 3Phen∶PBD/PBD/Al is 32 cd·m -2 at 28 V.展开更多
Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized ...Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.展开更多
文摘Nanoparticles and nanowires of LaPO 4: Eu phosphors were synthesized by hydrothermal method. Their luminescent properties including electronic transition, surface effect, and temperature-dependent luminescent characteristics were systemically studied and compared to the bulk powders. It can be concluded that in comparison with the bulk powders, the fluorescence intensity decreases in nanoparticles and nanowires, while the lifetime increases, indicating that the radiative transition rate decreases. The nonradiative transition rate in nanowires decreases than that in nanoparticles due to its decreased surface to volume ratio. The temperature-dependent experiments indicate that the thermal quenching in nanopowders becomes weaker than that in the bulk powders.
文摘Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS) 3Phen∶PBD/PBD/Al is 32 cd·m -2 at 28 V.
基金Supported by the National Natural Science Foundation of China(Nos.61178074, 61008051), the Program for the Development of Science and Technology of Jilin Province, China(Nos.20100113, 20140101205 JC) and the Natural Science Foundation of Jiangsu Province, China(No.BK2011513).
文摘Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.