Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G)...Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained.展开更多
文摘Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained.