期刊文献+

The Middle Equitable Dominating Graphs

The Middle Equitable Dominating Graphs
下载PDF
导出
摘要 Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained. Let G= (V, E) be a graph and A(G) is the collection of all minimal equitable dominating set of G. The middle equitable dominating graph of G is the graph denoted by Med(G) with vertex set the disjoint union of V∪A(G) and (u, v) is an edge if and only if u ∩ v ≠ φ whenever u, v ∈ A(G) or u ∈ v whenever u ∈ v and v ∈ A(G) . In this paper, characterizations are given for graphs whose middle equitable dominating graph is connected and Kp∈Med(G) . Other properties of middle equitable dominating graphs are also obtained.
出处 《Open Journal of Discrete Mathematics》 2012年第3期93-95,共3页 离散数学期刊(英文)
关键词 Eqitable DOMINATION Number MIDDLE Equitable Dominating Graph INTERSECTION GRAPHS Eqitable Domination Number Middle Equitable Dominating Graph Intersection Graphs
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部