We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has be...We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedral- structured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2T% is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.展开更多
YBa_(2)Cu_(3)O_(7‐x)(YBCO)thin films were prepared on LaAlO_(3)(LAO)substrates by a sol–gel method,and the epitaxial growth of Bi‐2212 thin films on YBCO thin films was investigated.Both YBCO and Bi_(2)Sr_(2)Ca1Cu_...YBa_(2)Cu_(3)O_(7‐x)(YBCO)thin films were prepared on LaAlO_(3)(LAO)substrates by a sol–gel method,and the epitaxial growth of Bi‐2212 thin films on YBCO thin films was investigated.Both YBCO and Bi_(2)Sr_(2)Ca1Cu_(2)O_(8)+δ(Bi‐2212)bilayer films exhibit good biaxial texture and superconducting properties.Afterward,a cross‐shaped Bi‐2212/YBCO heterostructure was fabricated,and its interfacial atomic arrangement and I‐V characteristics were analyzed.Atomic‐resolution STEM images obtained from a spherical‐aberration‐corrected transmission electron microscope show that two superconducting films exhibit a layered structure and the atoms inside the films are artfully arranged.Moreover,the order of the seven atomic layers between Bi‐2212 and YBCO layers with a thickness of about 1.32 nm is misarranged.Among them,the Y‐O layer of YBCO and the Sr‐O layer of Bi‐2212 share a CuO_(2) layer.The I‐V curves of Bi‐2212/YBCO bilayer films show that the seven misarranged atomic layers at Bi‐2212/YBCO interface acts as a barrier layer,which means that a Josephson junction can be fabricated using this interface characters.展开更多
An epitaxial SixGey layer on a silicon substrate was quantitatively evaluated using rocking curve (RC) and reciprocal space map (RSM) obtained by powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (E...An epitaxial SixGey layer on a silicon substrate was quantitatively evaluated using rocking curve (RC) and reciprocal space map (RSM) obtained by powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) in conjunction with transmission electron microscopy (TEM), and EDS in conjunction with scanning electron microscopy (SEM). To evaluate the relative deviation of the quantitative analysis results obtained by the RC, RSM, SEM/EDS, and TEM/EDS methods, a standard sample comprising a Si0.7602Ge0.2398 layer on a Si substrate was used. The correction factor (K-factor) for each technique was determined using multiple measurements. The average and standard deviation of the atomic fraction of Ge in the Si0.7602Ge0.2398 standard sample, as obtained by the RC, RSM, TEM/EDS, and SEM/EDS methods, were 0.2463 ± 0.0016, 0.2460 ± 0.0015, 0.2350 ± 0.0156, and 0.2433 ± 0.0059, respectively. The correction factors for the RC, RSM, TEM/EDS, and SEM/EDS methods were 0.9740, 0.9740, 1.0206, and 0.9856, respectively. The SixGey layer on a silicon substrate was quantitatively evaluated using the RC, RSM, and EDS/TEM methods. The atomic fraction of Ge in the epitaxial SixGey layer, as evaluated by the RC and RSM methods, was 0.1833 ± 0.0007, 0.1792 ± 0.0001, and 0.1631 ± 0.0105, respectively. After evaluating the results of the atomic fraction of Ge in the epitaxial layer, the error was very small, i.e., less than 3%. Thus, the RC, RSM, TEM/EDS, and SEM/EDS methods are suitable for evaluating the composition of Ge in epitaxial layers. However, the thickness of the epitaxial layer, whether the layer is strained or relaxed, and whether the area detected in the TEM and SEM analyses is consistent must be considered.展开更多
Epitaxial channel metal-oxide semiconductor field-effect transistors (MOSFETs) have been proposed as one possible way to avoid the problem of low inversion layers in traditional MOSFETs. This paper presents an equat...Epitaxial channel metal-oxide semiconductor field-effect transistors (MOSFETs) have been proposed as one possible way to avoid the problem of low inversion layers in traditional MOSFETs. This paper presents an equation of maximum depletion width modified which is more accurate than the original equation. A 4H--SiC epitaxial n-channel MOSFET using two-dimensional simulator ISE is simulated. Optimized structure would be realized based on the simulated results for increasing channel mobility.展开更多
文摘We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedral- structured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2T% is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.
基金supported by the National Natural Science Foundation of China(52172273 and 51672212)the Key Science and Technology Program of Shaanxi Province of China(No.2020zdzx04‐04‐02).
文摘YBa_(2)Cu_(3)O_(7‐x)(YBCO)thin films were prepared on LaAlO_(3)(LAO)substrates by a sol–gel method,and the epitaxial growth of Bi‐2212 thin films on YBCO thin films was investigated.Both YBCO and Bi_(2)Sr_(2)Ca1Cu_(2)O_(8)+δ(Bi‐2212)bilayer films exhibit good biaxial texture and superconducting properties.Afterward,a cross‐shaped Bi‐2212/YBCO heterostructure was fabricated,and its interfacial atomic arrangement and I‐V characteristics were analyzed.Atomic‐resolution STEM images obtained from a spherical‐aberration‐corrected transmission electron microscope show that two superconducting films exhibit a layered structure and the atoms inside the films are artfully arranged.Moreover,the order of the seven atomic layers between Bi‐2212 and YBCO layers with a thickness of about 1.32 nm is misarranged.Among them,the Y‐O layer of YBCO and the Sr‐O layer of Bi‐2212 share a CuO_(2) layer.The I‐V curves of Bi‐2212/YBCO bilayer films show that the seven misarranged atomic layers at Bi‐2212/YBCO interface acts as a barrier layer,which means that a Josephson junction can be fabricated using this interface characters.
文摘An epitaxial SixGey layer on a silicon substrate was quantitatively evaluated using rocking curve (RC) and reciprocal space map (RSM) obtained by powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) in conjunction with transmission electron microscopy (TEM), and EDS in conjunction with scanning electron microscopy (SEM). To evaluate the relative deviation of the quantitative analysis results obtained by the RC, RSM, SEM/EDS, and TEM/EDS methods, a standard sample comprising a Si0.7602Ge0.2398 layer on a Si substrate was used. The correction factor (K-factor) for each technique was determined using multiple measurements. The average and standard deviation of the atomic fraction of Ge in the Si0.7602Ge0.2398 standard sample, as obtained by the RC, RSM, TEM/EDS, and SEM/EDS methods, were 0.2463 ± 0.0016, 0.2460 ± 0.0015, 0.2350 ± 0.0156, and 0.2433 ± 0.0059, respectively. The correction factors for the RC, RSM, TEM/EDS, and SEM/EDS methods were 0.9740, 0.9740, 1.0206, and 0.9856, respectively. The SixGey layer on a silicon substrate was quantitatively evaluated using the RC, RSM, and EDS/TEM methods. The atomic fraction of Ge in the epitaxial SixGey layer, as evaluated by the RC and RSM methods, was 0.1833 ± 0.0007, 0.1792 ± 0.0001, and 0.1631 ± 0.0105, respectively. After evaluating the results of the atomic fraction of Ge in the epitaxial layer, the error was very small, i.e., less than 3%. Thus, the RC, RSM, TEM/EDS, and SEM/EDS methods are suitable for evaluating the composition of Ge in epitaxial layers. However, the thickness of the epitaxial layer, whether the layer is strained or relaxed, and whether the area detected in the TEM and SEM analyses is consistent must be considered.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60876061)Advanced Research Foundation(Grant No. 51308040302)
文摘Epitaxial channel metal-oxide semiconductor field-effect transistors (MOSFETs) have been proposed as one possible way to avoid the problem of low inversion layers in traditional MOSFETs. This paper presents an equation of maximum depletion width modified which is more accurate than the original equation. A 4H--SiC epitaxial n-channel MOSFET using two-dimensional simulator ISE is simulated. Optimized structure would be realized based on the simulated results for increasing channel mobility.