针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法...针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.展开更多
Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.A...Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical fr展开更多
Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest l...Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest learning(IBK),and locally weighted learning(LWL),coupled with resampling algorithms of bagging(BA)and dagging(DA)(BA-IBK,BA-KStar,BA-LWL,DA-IBK,DA-KStar,and DA-LWL)were developed and tested for multi-step ahead(3,6,and 9 d ahead)ST forecasting.In addition,a linear regression(LR)model was used as a benchmark to evaluate the results.A dataset was established,with daily ST time-series at 5 and 50 cm soil depths in a farmland as models’output and meteorological data as models’input,including mean(T_(mean)),minimum(Tmin),and maximum(T_(max))air temperatures,evaporation(Eva),sunshine hours(SSH),and solar radiation(SR),which were collected at Isfahan Synoptic Station(Iran)for 13 years(1992–2005).Six different input combination scenarios were selected based on Pearson’s correlation coefficients between inputs and outputs and fed into the models.We used 70%of the data to train the models,with the remaining 30%used for model evaluation via multiple visual and quantitative metrics.Our?ndings showed that T_(mean)was the most effective input variable for ST forecasting in most of the developed models,while in some cases the combinations of variables,including T_(mean)and T_(max)and T_(mean),T_(max),Tmin,Eva,and SSH proved to be the best input combinations.Among the evaluated models,BA-KStar showed greater compatibility,while in most cases,BA-IBK and-LWL provided more accurate results,depending on soil depth.For the 5 cm soil depth,BA-KStar had superior performance(i.e.,Nash-Sutcliffe efficiency(NSE)=0.90,0.87,and 0.85 for 3,6,and 9 d ahead forecasting,respectively);for the 50 cm soil depth,DA-KStar outperformed the other models(i.e.,NSE=0.88,0.89,and 0.89 for 3,6,and 9 d ahead forecasting,respectively).The results con?rmed that all hybrid models had higher prediction capabilities than the LR model.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides展开更多
As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles an...As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles and hardships during this difficult time.To better understand the sentiments and experiences of these international students,we developed the Situational Aspect-Based Annotation and Classification(SABAC)text mining framework.This framework uses a three-layer approach,combining baseline Deep Learning(DL)models with Machine Learning(ML)models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset.Using the pro-posed aspect2class annotation algorithm,we labeled bulk unlabeled tweets according to their contained aspect terms.However,we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets.To address this issue,we proposed the Volatile Stopwords Filtering(VSF)technique to reduce sparsity and enhance classifier performance.The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21%when using the random forest as a meta-classifier.Through testing on three benchmark datasets,we found that the SABAC ensemble framework performed exceptionally well.Our findings showed that international students during the pandemic faced various issues,including stress,uncertainty,health concerns,financial stress,and difficulties with online classes and returning to school.By analyzing and summarizing these annotated tweets,decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.展开更多
Climate change and land use change pose a threat to the world’s biodiversity and have significant impacts on the geographic distribution and composition of many bird species,but little is known about how they affect ...Climate change and land use change pose a threat to the world’s biodiversity and have significant impacts on the geographic distribution and composition of many bird species,but little is known about how they affect threatened large-sized waterbird species that rely on agricultural landscapes.To address this gap,we investigated how climate and land use changes influence the distribution and nesting habitats of the globally vulnerable Lesser Adjutant(Leptoptilos javanicus) in Nepal.Between 2012 and 2023,we collected distribution data from 24 districts and nesting site information from 18 districts.In a nation-wide breeding survey conducted in 2020,we documented a total of 581 fledglings from 346 nests in 109 colonies.The ensemble model predicted a current potential distribution of 15%(21,637 km2) and a potential nesting habitat of 13%(19,651 km2) for the species in Nepal.The highest predicted current suitable distribution and nesting habitat was in Madhesh Province,while none was predicted in Karnali Province.The majority of this predicted distributional and nesting habitat falls on agricultural landscapes(>70%).Our model showed a likely range expansion of up to 15%(21,573 km2) for the distribution and up to 12%(17,482 km2) for the nesting habitat under SSP5-8.5 scenarios for the 2070s.The range expansion is expected to occur mainly within the current distribution and breeding range(Tarai and some regions of Siwalk),particularly in Lumbini and Sudurpashchim provinces,and extend to the northern portions(Siwalik and Mid-hill regions) in other provinces.However,the current Protected Areas and Important Bird and Biodiversity Areas are inadequate for providing optimal habitats for the species.Although the model suggests range expansion,the use of such novel habitats is primarily contingent on the availability and protection of large-sized trees(particularly Bombax ceiba,observed in 65% of colonies) in agricultural regions where nesting occurs.Therefore,our research suggests that agricultural landscapes should be prio展开更多
Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical m...Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical modeling.In March 2011,due to the massive 9.0 earthquakes and ensuing tsunami that struck off the northern coast of the island of Honshu,the Fukushima Nuclear Plant I had the substantial leak of radioactive materials into surrounding environment and atmosphere.To aim at the global dispersion modeling of atmospheric radionuclides from Fukushima Nuclear Accident,this paper presents two approaches of atmospheric dispersion forecasting:ensemble dispersion modeling(EDM) and deterministic dispersion modeling(DDM),conducts the globally dispersion modeling cases for Fukushima nuclear accident,and analyzes and evaluates the simulation results using observation data.In this paper,EDM includes three different perturbation methods:meteorological perturbation method,turbulence perturbation method,and physical parameterization ensemble forecasting method.The simulation results show that the trajectories from EDM have a better performance,which is in better agreement with the atmospheric circulation and observation data; the spread from DDM is slower and not as far as EDM.Additionally,the results from EDM display a better performance in the modeling of transport from Japan to China East Sea on April 4.The reasons for these results are:the techniques of MET and TUR are performed by adding perturbations on mean wind and turbulent velocity,respectively; the various different flow fields will result in far spreading in horizontal and the simulation results closer to observation; PHY is performed by using different diffusion physical parameterizations and produces the perturbations on vertical wind,which results the spreading in smaller range and discontinuous in horizontal.Finally,the comparative analysis between modeling results and observation data shows that all cases results are in good agreement with trends of obse展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
Predictive analytics have been widely used in the literature with respect to laparoscopic surgery and risk stratification.However,most predictive analytics in this field exploit generalized linearmodels for predictive...Predictive analytics have been widely used in the literature with respect to laparoscopic surgery and risk stratification.However,most predictive analytics in this field exploit generalized linearmodels for predictive purposes,which are limited by model assumptionsdincluding linearity between response variables and additive interactions between variables.In many instances,such assumptions may not hold true,and the complex relationship between predictors and response variables is usually unknown.To address this limitation,machine-learning algorithms can be employed to model the underlying data.The advantage of machine learning algorithms is that they usually do not require strict assumptions regarding data structure,and they are able to learn complex functional forms using a nonparametric approach.Furthermore,two or more machine learning algorithms can be synthesized to further improve predictive accuracy.Such a process is referred to as ensemble modeling,and it has been used broadly in various industries.However,this approach has not been widely reported in the laparoscopic surgical literature due to its complexity in both model training and interpretation.With this technical note,we provide a comprehensive overview of the ensemble-modeling technique and a step-by-step tutorial on how to implement ensemble modeling.展开更多
Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT...Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans.展开更多
文摘针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性.
基金supported by the National Natural Science Foundation of China(90716008)the National Basic Research Program of China(2009CB724100).
文摘Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical fr
文摘Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest learning(IBK),and locally weighted learning(LWL),coupled with resampling algorithms of bagging(BA)and dagging(DA)(BA-IBK,BA-KStar,BA-LWL,DA-IBK,DA-KStar,and DA-LWL)were developed and tested for multi-step ahead(3,6,and 9 d ahead)ST forecasting.In addition,a linear regression(LR)model was used as a benchmark to evaluate the results.A dataset was established,with daily ST time-series at 5 and 50 cm soil depths in a farmland as models’output and meteorological data as models’input,including mean(T_(mean)),minimum(Tmin),and maximum(T_(max))air temperatures,evaporation(Eva),sunshine hours(SSH),and solar radiation(SR),which were collected at Isfahan Synoptic Station(Iran)for 13 years(1992–2005).Six different input combination scenarios were selected based on Pearson’s correlation coefficients between inputs and outputs and fed into the models.We used 70%of the data to train the models,with the remaining 30%used for model evaluation via multiple visual and quantitative metrics.Our?ndings showed that T_(mean)was the most effective input variable for ST forecasting in most of the developed models,while in some cases the combinations of variables,including T_(mean)and T_(max)and T_(mean),T_(max),Tmin,Eva,and SSH proved to be the best input combinations.Among the evaluated models,BA-KStar showed greater compatibility,while in most cases,BA-IBK and-LWL provided more accurate results,depending on soil depth.For the 5 cm soil depth,BA-KStar had superior performance(i.e.,Nash-Sutcliffe efficiency(NSE)=0.90,0.87,and 0.85 for 3,6,and 9 d ahead forecasting,respectively);for the 50 cm soil depth,DA-KStar outperformed the other models(i.e.,NSE=0.88,0.89,and 0.89 for 3,6,and 9 d ahead forecasting,respectively).The results con?rmed that all hybrid models had higher prediction capabilities than the LR model.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides
基金supported by the National Natural Science Foundation of China[Grant Number:92067106]the Ministry of Education of the People’s Republic of China[Grant Number:E-GCCRC20200309].
文摘As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles and hardships during this difficult time.To better understand the sentiments and experiences of these international students,we developed the Situational Aspect-Based Annotation and Classification(SABAC)text mining framework.This framework uses a three-layer approach,combining baseline Deep Learning(DL)models with Machine Learning(ML)models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset.Using the pro-posed aspect2class annotation algorithm,we labeled bulk unlabeled tweets according to their contained aspect terms.However,we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets.To address this issue,we proposed the Volatile Stopwords Filtering(VSF)technique to reduce sparsity and enhance classifier performance.The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21%when using the random forest as a meta-classifier.Through testing on three benchmark datasets,we found that the SABAC ensemble framework performed exceptionally well.Our findings showed that international students during the pandemic faced various issues,including stress,uncertainty,health concerns,financial stress,and difficulties with online classes and returning to school.By analyzing and summarizing these annotated tweets,decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic.
基金This work has been supported by CAS-SEABRI(Y4ZK111B01)In-ternational Science,and Technology Commissioner of Yunnan Province(202203AK140027)+2 种基金Yunnan Province Science and Technology Depart-ment(202203AP140007)Rufford Small Grants Foundation(31372-2)Tribhuvan University National Priority Area Research Grant(TU-NPAR-2078/79-ERG-04)。
文摘Climate change and land use change pose a threat to the world’s biodiversity and have significant impacts on the geographic distribution and composition of many bird species,but little is known about how they affect threatened large-sized waterbird species that rely on agricultural landscapes.To address this gap,we investigated how climate and land use changes influence the distribution and nesting habitats of the globally vulnerable Lesser Adjutant(Leptoptilos javanicus) in Nepal.Between 2012 and 2023,we collected distribution data from 24 districts and nesting site information from 18 districts.In a nation-wide breeding survey conducted in 2020,we documented a total of 581 fledglings from 346 nests in 109 colonies.The ensemble model predicted a current potential distribution of 15%(21,637 km2) and a potential nesting habitat of 13%(19,651 km2) for the species in Nepal.The highest predicted current suitable distribution and nesting habitat was in Madhesh Province,while none was predicted in Karnali Province.The majority of this predicted distributional and nesting habitat falls on agricultural landscapes(>70%).Our model showed a likely range expansion of up to 15%(21,573 km2) for the distribution and up to 12%(17,482 km2) for the nesting habitat under SSP5-8.5 scenarios for the 2070s.The range expansion is expected to occur mainly within the current distribution and breeding range(Tarai and some regions of Siwalk),particularly in Lumbini and Sudurpashchim provinces,and extend to the northern portions(Siwalik and Mid-hill regions) in other provinces.However,the current Protected Areas and Important Bird and Biodiversity Areas are inadequate for providing optimal habitats for the species.Although the model suggests range expansion,the use of such novel habitats is primarily contingent on the availability and protection of large-sized trees(particularly Bombax ceiba,observed in 65% of colonies) in agricultural regions where nesting occurs.Therefore,our research suggests that agricultural landscapes should be prio
基金supported in part by the National Natural Science Foundation of China(Grant No.41305104)the Special Fund for Meteo-scientific Research in the Public Interest(Grant No.GYHY201306061)
文摘Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical modeling.In March 2011,due to the massive 9.0 earthquakes and ensuing tsunami that struck off the northern coast of the island of Honshu,the Fukushima Nuclear Plant I had the substantial leak of radioactive materials into surrounding environment and atmosphere.To aim at the global dispersion modeling of atmospheric radionuclides from Fukushima Nuclear Accident,this paper presents two approaches of atmospheric dispersion forecasting:ensemble dispersion modeling(EDM) and deterministic dispersion modeling(DDM),conducts the globally dispersion modeling cases for Fukushima nuclear accident,and analyzes and evaluates the simulation results using observation data.In this paper,EDM includes three different perturbation methods:meteorological perturbation method,turbulence perturbation method,and physical parameterization ensemble forecasting method.The simulation results show that the trajectories from EDM have a better performance,which is in better agreement with the atmospheric circulation and observation data; the spread from DDM is slower and not as far as EDM.Additionally,the results from EDM display a better performance in the modeling of transport from Japan to China East Sea on April 4.The reasons for these results are:the techniques of MET and TUR are performed by adding perturbations on mean wind and turbulent velocity,respectively; the various different flow fields will result in far spreading in horizontal and the simulation results closer to observation; PHY is performed by using different diffusion physical parameterizations and produces the perturbations on vertical wind,which results the spreading in smaller range and discontinuous in horizontal.Finally,the comparative analysis between modeling results and observation data shows that all cases results are in good agreement with trends of obse
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
基金funding from RUIYI emergency medical research fund(202013)Open Foundation of Artificial Intelligence Key Laboratory of Sichuan Province(2020RYY03)+1 种基金Research project of Health and Family Planning Commission of Sichuan Province(17PJ136)funding from Key Research&Development project of Zhejiang Province(2021C03071).
文摘Predictive analytics have been widely used in the literature with respect to laparoscopic surgery and risk stratification.However,most predictive analytics in this field exploit generalized linearmodels for predictive purposes,which are limited by model assumptionsdincluding linearity between response variables and additive interactions between variables.In many instances,such assumptions may not hold true,and the complex relationship between predictors and response variables is usually unknown.To address this limitation,machine-learning algorithms can be employed to model the underlying data.The advantage of machine learning algorithms is that they usually do not require strict assumptions regarding data structure,and they are able to learn complex functional forms using a nonparametric approach.Furthermore,two or more machine learning algorithms can be synthesized to further improve predictive accuracy.Such a process is referred to as ensemble modeling,and it has been used broadly in various industries.However,this approach has not been widely reported in the laparoscopic surgical literature due to its complexity in both model training and interpretation.With this technical note,we provide a comprehensive overview of the ensemble-modeling technique and a step-by-step tutorial on how to implement ensemble modeling.
基金funding from the Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.105.08-2019.03。
文摘Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans.