期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
在线KPLS建模方法及在磨机负荷参数集成建模中的应用 被引量:21
1
作者 汤健 柴天佑 +1 位作者 余文 赵立杰 《自动化学报》 EI CSCD 北大核心 2013年第5期471-486,共16页
针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法... 针对过程非线性、基于历史数据构建的离线模型泛化性差以及基于滑动窗口和每样本递推更新的在线建模方法难以均衡建模精度和建模速度等问题,提出了一种在线核偏最小二乘(On-line kernel partial least squares,OLKPLS)建模方法.该方法依据新样本与建模样本间的近似线性依靠(Approximate linear dependence,ALD)值和代表工业过程特性漂移幅度的阈值,选择有价值样本更新KPLS模型,并采用合成数据和Benchmark平台数据对该方法进行了仿真验证.针对基于离线历史数据建立的融合多传感器信息的磨机负荷参数集成模型难以适应磨矿过程时变特性的问题,提出了基于OLKPLS和在线自适应加权融合算法的在线集成建模方法,并通过实验球磨机的实际运行数据仿真验证了方法的有效性. 展开更多
关键词 核偏最小二乘 近似线性依靠 模型更新条件 在线建模 集成建模
下载PDF
内陆水体水质参数遥感反演集合建模方法 被引量:17
2
作者 曹引 冶运涛 +3 位作者 赵红莉 蒋云钟 王浩 王俊锋 《中国环境科学》 EI CAS CSSCI CSCD 北大核心 2017年第10期3940-3951,共12页
以微山湖为研究对象,利用2015年6月11~13日获取的实测高光谱和水体叶绿素a浓度、总悬浮物浓度和浊度数据,构建3种水质参数遥感反演常用的经验模型和PSO-SVM模型并进行精度评价,确定参与3种水质参数集合建模的反演模型,分别利用以熵权法(... 以微山湖为研究对象,利用2015年6月11~13日获取的实测高光谱和水体叶绿素a浓度、总悬浮物浓度和浊度数据,构建3种水质参数遥感反演常用的经验模型和PSO-SVM模型并进行精度评价,确定参与3种水质参数集合建模的反演模型,分别利用以熵权法(EW-CM)、集对分析法(SPA-CM)为代表的确定性集合建模方法和以贝叶斯模型平均(BMA)为代表的概率性集合方法构建反演3种水质参数的EW-CM、SPA-CM和BMA集合模型.通过贝叶斯平均方法获取各模型和BMA集合模型反演3种水质参数的不确定性区间,对比3种水质参数各模型和集合模型反演结果.结果表明:(1)确定性集合模型中SPA-CM模型精度整体高于EW-CM模型;(2)BMA概率性集合模型建模精度整体上要优于SPA-CM和EW-CM集合模型,验证精度稍低于SPA-CM模型,和EW-CM模型相当;(3)概率性集合建模可以给出集合模型和各模型反演水质参数的不确定性区间;(4)确定性和概率性集合模型可以综合各模型信息,使得集合模型同时具有较高的建模和验证精度,降低单一模型反演水质参数的不确定性,并在一定程度上提高水质参数反演精度. 展开更多
关键词 内陆水体 水质遥感 集合建模 微山湖 叶绿素A 总悬浮物 浊度
下载PDF
New perspective in statistical modeling of wall-bounded turbulence 被引量:14
3
作者 Zhen-Su She Xi Chen +1 位作者 You Wu Fazle Hussain 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期847-861,共15页
Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.A... Despite dedicated effort for many decades,statistical description of highly technologically important wall turbulence remains a great challenge.Current models are unfortunately incomplete,or empirical,or qualitative.After a review of the existing theories of wall turbulence,we present a new framework,called the structure ensemble dynamics (SED),which aims at integrating the turbulence dynamics into a quantitative description of the mean flow.The SED theory naturally evolves from a statistical physics understanding of non-equilibrium open systems,such as fluid turbulence, for which mean quantities are intimately coupled with the fluctuation dynamics.Starting from the ensemble-averaged Navier-Stokes(EANS) equations,the theory postulates the existence of a finite number of statistical states yielding a multi-layer picture for wall turbulence.Then,it uses order functions(ratios of terms in the mean momentum as well as energy equations) to characterize the states and transitions between states.Application of the SED analysis to an incompressible channel flow and a compressible turbulent boundary layer shows that the order functions successfully reveal the multi-layer structure for wall-bounded turbulence, which arises as a quantitative extension of the traditional view in terms of sub-layer,buffer layer,log layer and wake. Furthermore,an idea of using a set of hyperbolic functions for modeling transitions between layers is proposed for a quantitative model of order functions across the entire flow domain.We conclude that the SED provides a theoretical framework for expressing the yet-unknown effects of fluctuation structures on the mean quantities,and offers new methods to analyze experimental and simulation data.Combined with asymptotic analysis,it also offers a way to evaluate convergence of simulations.The SED approach successfully describes the dynamics at both momentum and energy levels, in contrast with all prevalent approaches describing the mean velocity profile only.Moreover,the SED theoretical fr 展开更多
关键词 Wall turbulence Statistical modeling Structure ensemble dynamics Order function MULTI-LAYER
下载PDF
综合非滑坡样本选取指数与异质集成机器学习的区域滑坡易发性建模 被引量:3
4
作者 周超 甘露露 +4 位作者 王悦 吴宏阳 喻进 曹颖 殷坤龙 《地球信息科学学报》 EI CSCD 北大核心 2023年第8期1570-1585,共16页
为解决基于机器学习的滑坡易发性建模存在的单模型分类能力弱和传统随机抽取非滑坡样本准确性不高的问题,本研究以三峡库区奉节县为例,应用优化的非滑坡样本和Stacking异质集成机器学习模型进行滑坡易发性建模研究。首先,基于地形、地... 为解决基于机器学习的滑坡易发性建模存在的单模型分类能力弱和传统随机抽取非滑坡样本准确性不高的问题,本研究以三峡库区奉节县为例,应用优化的非滑坡样本和Stacking异质集成机器学习模型进行滑坡易发性建模研究。首先,基于地形、地质和遥感影像等数据提取16个评价指标并进行相关性分析,剔除高相关指标,构建易发性评价指标体系;其次,基于信息量模型提出非滑坡样本选取(Non-Landslide Sampling,NLS)指数;最后,应用NLS指数选取更高质量的非滑坡样本,并与滑坡样本组成训练集;采用随机森林(Random Forest,RF),轻量级梯度提升树(Light Gradient Boosting Machine,LGBM),梯度提升决策树(Gradient Boosting Decision Tree,GBDT),以及以三者为基模型的同质(Boosting)和异质(Stacking)集成方法进行易发性建模。结果表明:应用NLS指数能选取得到质量更高的非滑坡样本,提升了易发性建模精度;Stacking异质集成机器学习模型的精度最高,为0.941,优于3个同质集成模型和3个单模型,表明异质集成算法能显著提升机器学习建模的性能,是一种可靠的滑坡易发性评价方法。本研究的结果将有助于提升区域滑坡灾害风险评估的精确度。 展开更多
关键词 滑坡灾害 异质集成 非滑坡样本 易发性 机器学习 STACKING BOOSTING 三峡库区
原文传递
雨养作物产量差研究进展 被引量:7
5
作者 米娜 蔡福 +6 位作者 张玉书 赵一俊 张淑杰 纪瑞鹏 王阳 王贺然 隋明 《气象与环境学报》 2018年第6期140-147,共8页
本文从雨养作物产量差大小、产量差的解释因素、缩小产量差的途径等方面综述了近10 a,特别是近5 a雨养作物产量差研究最新进展,回顾了雨养潜在产量、实际产量、雨养作物产量差的概念、内涵及研究方法,对最新研究提出的作物系统潜在产量... 本文从雨养作物产量差大小、产量差的解释因素、缩小产量差的途径等方面综述了近10 a,特别是近5 a雨养作物产量差研究最新进展,回顾了雨养潜在产量、实际产量、雨养作物产量差的概念、内涵及研究方法,对最新研究提出的作物系统潜在产量与作物系统产量差概念也进行了阐述。根据潜在产量获取方法的不同,可以将产量差分为基于模型的产量差、基于试验的产量差和基于农户的产量差。作物系统产量潜力是指单位面积土地在单位时间内多种作物组合的最高产量,作物系统产量差是指现有的作物系统实际产量与作物系统潜在产量的差值。产量差的解释因素可以分为五类,包括气候因素、土壤因素、作物和农场管理因素、农场特征因素和社会经济因素。缩小雨养作物产量差应主要围绕三大领域,即育种、遗传学与生理学研究;品种选择、播种日期、播种密度、施肥量、杂草与病虫害管理等优化措施;提高土壤质量(如土壤酸碱度、土壤紧实度、土壤有机碳含量等状况的改善)。无论是发达国家还是发展中国家的雨养农业区,均存在提升作物平均产量的空间(产量差从0.5—5 t·ha-1不等)。未来中国雨养作物产量差的研究应进一步致力于基于多作物模型模拟方法的产量差研究;基于不同降水年型的作物产量差分析;以及作物系统产量潜力与产量差研究。 展开更多
关键词 产量潜力 产量差 作物系统 集合模拟 产量差解释因素
下载PDF
基于Tri-training GPR的半监督软测量建模方法
6
作者 马君霞 李林涛 熊伟丽 《化工学报》 EI CSCD 北大核心 2024年第7期2613-2623,共11页
集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training ... 集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training GPR模型。该建模策略充分发挥了半监督学习的优势,减轻建模过程对标记样本数据的需求,在低数据标签率下,仍能通过对无标记数据进行筛选从而扩充可用于建模的有标记样本数据集,并进一步结合半监督学习和集成学习的优势,提出一种新的选择高置信度样本的思路。将所提方法应用于青霉素发酵和脱丁烷塔过程,建立青霉素和丁烷浓度预测软测量模型,与传统的建模方法相比获得了更优的预测结果,验证了模型的有效性。 展开更多
关键词 软测量 集成学习 半监督学习 TRI-TRAINING 高斯过程回归 过程控制 动力学模型 化学过程
下载PDF
基于工况分类的熟料f-CaO含量预测方法研究
7
作者 崔保华 张成伟 +3 位作者 李慧霞 陈克政 郭文洁 孙战军 《水泥工程》 CAS 2024年第1期1-5,15,共6页
为实现游离氧化钙(f-CaO)含量的持续稳定预测,采用集成学习算法研究软测量实现方法。针对烧成系统中的复杂工况,首先展开工况分类,然后对每一类工况构建集成学习预测模型,同时引入在线建模的方式提高模型的泛化能力和时间有效性,解决了... 为实现游离氧化钙(f-CaO)含量的持续稳定预测,采用集成学习算法研究软测量实现方法。针对烧成系统中的复杂工况,首先展开工况分类,然后对每一类工况构建集成学习预测模型,同时引入在线建模的方式提高模型的泛化能力和时间有效性,解决了模型短期有效和重复性建模的问题。集成学习算法基于bagging的思想进行对多种弱学习器构建模型,通过检验发现模型效果显著优于单一模型效果。该算法融合了工艺生产特点和多种回归算法,具有较好的稳定性和提前性,实现了水泥质量的实时控制,助力水泥厂高质量稳定生产。 展开更多
关键词 F-CAO 集成学习 软测量 工况分类 在线建模
下载PDF
Multi-step ahead soil temperature forecasting at different depths based on meteorological data:Integrating resampling algorithms and machine learning models 被引量:1
8
作者 Khabat KHOSRAVI Ali GOLKARIAN +5 位作者 Rahim BARZEGAR Mohammad T.AALAMI Salim HEDDAM Ebrahim OMIDVAR Saskia D.KEESSTRA Manuel LÓPEZ-VICENTE 《Pedosphere》 SCIE CAS CSCD 2023年第3期479-495,共17页
Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest l... Direct soil temperature(ST)measurement is time-consuming and costly;thus,the use of simple and cost-effective machine learning(ML)tools is helpful.In this study,ML approaches,including KStar,instance-based K-nearest learning(IBK),and locally weighted learning(LWL),coupled with resampling algorithms of bagging(BA)and dagging(DA)(BA-IBK,BA-KStar,BA-LWL,DA-IBK,DA-KStar,and DA-LWL)were developed and tested for multi-step ahead(3,6,and 9 d ahead)ST forecasting.In addition,a linear regression(LR)model was used as a benchmark to evaluate the results.A dataset was established,with daily ST time-series at 5 and 50 cm soil depths in a farmland as models’output and meteorological data as models’input,including mean(T_(mean)),minimum(Tmin),and maximum(T_(max))air temperatures,evaporation(Eva),sunshine hours(SSH),and solar radiation(SR),which were collected at Isfahan Synoptic Station(Iran)for 13 years(1992–2005).Six different input combination scenarios were selected based on Pearson’s correlation coefficients between inputs and outputs and fed into the models.We used 70%of the data to train the models,with the remaining 30%used for model evaluation via multiple visual and quantitative metrics.Our?ndings showed that T_(mean)was the most effective input variable for ST forecasting in most of the developed models,while in some cases the combinations of variables,including T_(mean)and T_(max)and T_(mean),T_(max),Tmin,Eva,and SSH proved to be the best input combinations.Among the evaluated models,BA-KStar showed greater compatibility,while in most cases,BA-IBK and-LWL provided more accurate results,depending on soil depth.For the 5 cm soil depth,BA-KStar had superior performance(i.e.,Nash-Sutcliffe efficiency(NSE)=0.90,0.87,and 0.85 for 3,6,and 9 d ahead forecasting,respectively);for the 50 cm soil depth,DA-KStar outperformed the other models(i.e.,NSE=0.88,0.89,and 0.89 for 3,6,and 9 d ahead forecasting,respectively).The results con?rmed that all hybrid models had higher prediction capabilities than the LR model. 展开更多
关键词 bootstrap aggregating algorithm data mining disjoint aggregating algorithm ensemble modeling hybrid model
原文传递
Landslide susceptibility assessment in Western Henan Province based on a comparison of conventional and ensemble machine learning 被引量:1
9
作者 Wen-geng Cao Yu Fu +4 位作者 Qiu-yao Dong Hai-gang Wang Yu Ren Ze-yan Li Yue-ying Du 《China Geology》 CAS CSCD 2023年第3期409-419,共11页
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive... Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides 展开更多
关键词 Landslide susceptibility model Risk assessment Machine learning Support vector machines Logistic regression Random forest Extreme gradient boosting Linear discriminant analysis ensemble modeling Factor analysis Geological disaster survey engineering Middle mountain area Yellow River Basin
下载PDF
Ensemble Deep Learning Framework for Situational Aspects-Based Annotation and Classification of International Student’s Tweets during COVID-19
10
作者 Shabir Hussain Muhammad Ayoub +4 位作者 Yang Yu Junaid Abdul Wahid Akmal Khan Dietmar P.F.Moller Hou Weiyan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5355-5377,共23页
As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles an... As the COVID-19 pandemic swept the globe,social media plat-forms became an essential source of information and communication for many.International students,particularly,turned to Twitter to express their struggles and hardships during this difficult time.To better understand the sentiments and experiences of these international students,we developed the Situational Aspect-Based Annotation and Classification(SABAC)text mining framework.This framework uses a three-layer approach,combining baseline Deep Learning(DL)models with Machine Learning(ML)models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset.Using the pro-posed aspect2class annotation algorithm,we labeled bulk unlabeled tweets according to their contained aspect terms.However,we also recognized the challenges of reducing data’s high dimensionality and sparsity to improve performance and annotation on unlabeled datasets.To address this issue,we proposed the Volatile Stopwords Filtering(VSF)technique to reduce sparsity and enhance classifier performance.The resulting Student-COVID Twitter dataset achieved a sophisticated accuracy of 93.21%when using the random forest as a meta-classifier.Through testing on three benchmark datasets,we found that the SABAC ensemble framework performed exceptionally well.Our findings showed that international students during the pandemic faced various issues,including stress,uncertainty,health concerns,financial stress,and difficulties with online classes and returning to school.By analyzing and summarizing these annotated tweets,decision-makers can better understand and address the real-time problems international students face during the ongoing pandemic. 展开更多
关键词 COVID-19 pandemic situational awareness ensemble learning aspect-based text classification deep learning models international students topic modeling
下载PDF
The effects of climate and land use change on the potential distribution and nesting habitat of the Lesser Adjutant in Nepal
11
作者 Hem Bahadur Katuwal Hari Prasad Sharma +10 位作者 Prashant Rokka Krishna Prasad Bhusal Bishnu Prasad Bhattarai Sabina Koirala Sandeep Chhetri Luitel Shailendra Yadav Ganesh Sah Hem Sagar Baral Laxman Prasad Poudyal Lin Wang Rui-Chang Quan 《Avian Research》 SCIE CSCD 2023年第3期326-335,共10页
Climate change and land use change pose a threat to the world’s biodiversity and have significant impacts on the geographic distribution and composition of many bird species,but little is known about how they affect ... Climate change and land use change pose a threat to the world’s biodiversity and have significant impacts on the geographic distribution and composition of many bird species,but little is known about how they affect threatened large-sized waterbird species that rely on agricultural landscapes.To address this gap,we investigated how climate and land use changes influence the distribution and nesting habitats of the globally vulnerable Lesser Adjutant(Leptoptilos javanicus) in Nepal.Between 2012 and 2023,we collected distribution data from 24 districts and nesting site information from 18 districts.In a nation-wide breeding survey conducted in 2020,we documented a total of 581 fledglings from 346 nests in 109 colonies.The ensemble model predicted a current potential distribution of 15%(21,637 km2) and a potential nesting habitat of 13%(19,651 km2) for the species in Nepal.The highest predicted current suitable distribution and nesting habitat was in Madhesh Province,while none was predicted in Karnali Province.The majority of this predicted distributional and nesting habitat falls on agricultural landscapes(>70%).Our model showed a likely range expansion of up to 15%(21,573 km2) for the distribution and up to 12%(17,482 km2) for the nesting habitat under SSP5-8.5 scenarios for the 2070s.The range expansion is expected to occur mainly within the current distribution and breeding range(Tarai and some regions of Siwalk),particularly in Lumbini and Sudurpashchim provinces,and extend to the northern portions(Siwalik and Mid-hill regions) in other provinces.However,the current Protected Areas and Important Bird and Biodiversity Areas are inadequate for providing optimal habitats for the species.Although the model suggests range expansion,the use of such novel habitats is primarily contingent on the availability and protection of large-sized trees(particularly Bombax ceiba,observed in 65% of colonies) in agricultural regions where nesting occurs.Therefore,our research suggests that agricultural landscapes should be prio 展开更多
关键词 Agricultural landscapes Bombax ceiba ensemble modeling Farmland bird IBA Nest site
下载PDF
面向质量设计的Kriging组合建模技术 被引量:4
12
作者 肖甜丽 马义中 林成龙 《计算机集成制造系统》 EI CSCD 北大核心 2021年第7期2023-2034,共12页
Kriging代理模型广泛用于替代计算昂贵的工程仿真模型。而现有单个核函数Kriging建模技术的预测性能依赖于具体问题,往往在不同情况下表现差异较大,缺乏普适性和稳健性。针对该问题,研究了具有多个核函数的Kriging组合建模,提出同时考... Kriging代理模型广泛用于替代计算昂贵的工程仿真模型。而现有单个核函数Kriging建模技术的预测性能依赖于具体问题,往往在不同情况下表现差异较大,缺乏普适性和稳健性。针对该问题,研究了具有多个核函数的Kriging组合建模,提出同时考虑核函数选择和多组权重因子。首先基于随机搜索变量选择法选择显著核函数组合,其次借助K均值聚类法获得多组权重因子,最后结合选择的显著核函数和多组权重因子构建Kriging组合模型。仿真算例和工业实例的比较结果表明,所提方法不仅产生更为精确和稳健的预测,而且能为质量设计提供可靠的优化参数组合。 展开更多
关键词 KRIGING模型 组合建模 核函数选择 多组权重因子 质量设计
下载PDF
醛酮化合物色谱保留指数的集成全息定量构效关系模型 被引量:4
13
作者 雷斌 臧芸蕾 +4 位作者 薛志伟 葛懿擎 李伟 翟倩 焦龙 《色谱》 CAS CSCD 北大核心 2021年第3期331-337,共7页
色谱保留指数(retention index,RI)是色谱分析中的重要参数,不同化合物在不同极性固定相上具有不同的保留行为。醛酮化合物种类众多,实验测定其RI值的时间和经济成本高。该论文采用集成建模(ensemble modeling)结合全息定量构效关系(HQS... 色谱保留指数(retention index,RI)是色谱分析中的重要参数,不同化合物在不同极性固定相上具有不同的保留行为。醛酮化合物种类众多,实验测定其RI值的时间和经济成本高。该论文采用集成建模(ensemble modeling)结合全息定量构效关系(HQSAR)方法研究了醛酮化合物在2种固定相(DB-210和HP-Inno w ax)上色谱保留指数的定量构效关系(QSAR)模型。用外部测试集验证法和留一交叉验证法评估了所建立模型的预测能力。首先建立了34种被研究化合物的个体HQSAR模型。在固定相DB-210上,片段特性(FD)为"供体/受体原子(DA)"且片段尺寸(FS)为1~9时可得到最优个体模型,在固定相HP-Innow ax上,FD为"DA"且FS为4~7时可得到最优个体模型,这两个模型的交叉验证相关系数(qcv2)分别为0.935和0.909,外部验证相关系数(qext2)分别为0.925和0.927,一致性相关系数(CCC)分别为0.953和0.960,预测平方相关系数F2 (QF22)分别为0.922和0.918,预测平方相关系数F3(QF32)分别为0.931和0.927。研究结果表明醛酮化合物的分子结构与RI值之间存在定量关系,用HQSAR方法可以建立二者之间的QSAR模型。其次,以4个预测准确度最高的个体HQSAR模型作为子模型通过算术平均建立了集成HQSAR模型。建立的集成HQSAR模型预测被研究化合物在DB-210和HPInno wax固定相上RI值的qcv2分别为0.927和0.919,qext2分别为0.929和0.963,CCC分别为0.956和0.979,Q2F2分别为0.927和0.958,Q2F3分别为0.935和0.963。与个体HQSAR模型相比,建立的集成HQSAR模型预测准确度更高。这说明集成建模是提高HQSAR模型预测能力的有效方法,HQSAR与集成建模方法相结合可以用于研究和预测醛酮化合物的RI值。 展开更多
关键词 集成建模 全息定量构效关系 醛酮化合物 色谱保留指数
下载PDF
The comparison of ensemble or deterministic dispersion modeling on global dispersion during Fukushima Dai-ichi nuclear accident 被引量:3
14
作者 SHENG Li SONG ZhenXin +4 位作者 HU JiangKai Lü Kai TONG Hua LI Bing QIAO QingDang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第3期356-370,共15页
Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical m... Ensemble forcasting,originally developed for weather prediction,is lately being extended to atmospheric dispersion applications,which is a new,effective methodology for improving the atmospheric dispersion numerical modeling.In March 2011,due to the massive 9.0 earthquakes and ensuing tsunami that struck off the northern coast of the island of Honshu,the Fukushima Nuclear Plant I had the substantial leak of radioactive materials into surrounding environment and atmosphere.To aim at the global dispersion modeling of atmospheric radionuclides from Fukushima Nuclear Accident,this paper presents two approaches of atmospheric dispersion forecasting:ensemble dispersion modeling(EDM) and deterministic dispersion modeling(DDM),conducts the globally dispersion modeling cases for Fukushima nuclear accident,and analyzes and evaluates the simulation results using observation data.In this paper,EDM includes three different perturbation methods:meteorological perturbation method,turbulence perturbation method,and physical parameterization ensemble forecasting method.The simulation results show that the trajectories from EDM have a better performance,which is in better agreement with the atmospheric circulation and observation data; the spread from DDM is slower and not as far as EDM.Additionally,the results from EDM display a better performance in the modeling of transport from Japan to China East Sea on April 4.The reasons for these results are:the techniques of MET and TUR are performed by adding perturbations on mean wind and turbulent velocity,respectively; the various different flow fields will result in far spreading in horizontal and the simulation results closer to observation; PHY is performed by using different diffusion physical parameterizations and produces the perturbations on vertical wind,which results the spreading in smaller range and discontinuous in horizontal.Finally,the comparative analysis between modeling results and observation data shows that all cases results are in good agreement with trends of obse 展开更多
关键词 ensemble dispersion modeling deterministic dispersion modeling atmospheric dispersion Fukushima nuclear accident
原文传递
Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills 被引量:3
15
作者 汤健 柴天佑 +1 位作者 刘卓 余文 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2020-2028,共9页
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ... Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones. 展开更多
关键词 Nonlinear latent feature extraction Kernel partial least squares Selective ensemble modeling Least squares support vector machines Material to ball volume ratio
下载PDF
基于Bagging集成的球团矿烧结过程混合建模 被引量:3
16
作者 周鑫 谭帅 +1 位作者 杨琦 彭俊 《控制工程》 CSCD 北大核心 2015年第3期516-520,共5页
链篦机回转窑球团矿烧结过程是典型的热工过程,具有非线性、高耦合和大滞后的特点。要建立精确可靠的机理模型十分困难。此外,简化和假定条件与实际过程之间往往存在偏差,因此,单纯利用机理建模方法对球团矿烧结过程进行建模具有一定的... 链篦机回转窑球团矿烧结过程是典型的热工过程,具有非线性、高耦合和大滞后的特点。要建立精确可靠的机理模型十分困难。此外,简化和假定条件与实际过程之间往往存在偏差,因此,单纯利用机理建模方法对球团矿烧结过程进行建模具有一定的局限性。考虑到球团矿烧结过程的复杂性和单纯机理模型的局限性,在机理模型的基础上,利用神经网络集成进行灰箱模型建模,以BP神经网络为集成的个体网络,采用Bagging法来生成样本集,样本用来训练个体网络。结果显示,混合模型具有更高的精度,是一种更优的模型。 展开更多
关键词 BAGGING 集成学习 球团矿 混合建模
下载PDF
基于集成相关向量机的水质在线预测模型 被引量:3
17
作者 谭承诚 于广平 邱志成 《计算机测量与控制》 2018年第3期224-227,共4页
针对污水处理过程存在着强非线性和非稳态运行等特征,传统传感器维护成本高昂且无法快速准确地测量生化需氧量(BOD)等水质指标的问题,提出一种基于集成相关向量机的水质在线预测模型;该模型首先采用相关向量机(RVM)为弱预测器,利用改进... 针对污水处理过程存在着强非线性和非稳态运行等特征,传统传感器维护成本高昂且无法快速准确地测量生化需氧量(BOD)等水质指标的问题,提出一种基于集成相关向量机的水质在线预测模型;该模型首先采用相关向量机(RVM)为弱预测器,利用改进的AdaBoost.RT算法将多个弱预测器集成为强预测器,实现了污水处理过程中水质的在线预测;仿真实验结果表明,该水质在线预测模型预测精度高,综合性能突出,克服了单一预测器随着异常点增多,模型泛化能力下降和鲁棒性不足的问题,能较好地实现了污水处理过程中的水质在线预测。 展开更多
关键词 污水处理 相关向量机 集成 在线预测 鲁棒性
下载PDF
Predictive analytics with ensemble modeling in laparoscopic surgery:A technical note 被引量:2
18
作者 Zhongheng Zhang Lin Chen +1 位作者 Ping Xu Yucai Hong 《Laparoscopic, Endoscopic and Robotic Surgery》 2022年第1期25-34,共10页
Predictive analytics have been widely used in the literature with respect to laparoscopic surgery and risk stratification.However,most predictive analytics in this field exploit generalized linearmodels for predictive... Predictive analytics have been widely used in the literature with respect to laparoscopic surgery and risk stratification.However,most predictive analytics in this field exploit generalized linearmodels for predictive purposes,which are limited by model assumptionsdincluding linearity between response variables and additive interactions between variables.In many instances,such assumptions may not hold true,and the complex relationship between predictors and response variables is usually unknown.To address this limitation,machine-learning algorithms can be employed to model the underlying data.The advantage of machine learning algorithms is that they usually do not require strict assumptions regarding data structure,and they are able to learn complex functional forms using a nonparametric approach.Furthermore,two or more machine learning algorithms can be synthesized to further improve predictive accuracy.Such a process is referred to as ensemble modeling,and it has been used broadly in various industries.However,this approach has not been widely reported in the laparoscopic surgical literature due to its complexity in both model training and interpretation.With this technical note,we provide a comprehensive overview of the ensemble-modeling technique and a step-by-step tutorial on how to implement ensemble modeling. 展开更多
关键词 ensemble modeling Laparoscopic surgery Machine learning
下载PDF
基于ICA变量分组的集成软测量方法研究 被引量:2
19
作者 杨凯 孙玉梅 +2 位作者 王莉 杜妮 陈祥光 《北京理工大学学报》 EI CAS CSCD 北大核心 2018年第6期631-636,共6页
提出了一种基于独立主成分分析(independent component analysis,ICA)变量分组和集成学习的软测量建模方法.该方法首先运用ICA对输入过程变量进行分组,建立多个变量组子空间.然后在各变量组子空间内提取子样本集,降低变量和变量组之间... 提出了一种基于独立主成分分析(independent component analysis,ICA)变量分组和集成学习的软测量建模方法.该方法首先运用ICA对输入过程变量进行分组,建立多个变量组子空间.然后在各变量组子空间内提取子样本集,降低变量和变量组之间的耦合性,并基于核偏最小二乘法(KPLS)建立预测子模型.最后,采用贝叶斯方法对子模型的输出进行集成,给出最终预测结果.运用该方法对工业橡胶密炼过程的数据进行了预测,并与其它软测量方法的结果进行比较分析,实验结果表明,本文提出的方法具有更好的预测性能. 展开更多
关键词 软测量 变量分组 核学习 集成建模
下载PDF
Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques 被引量:2
20
作者 Binh Thai Pham Abolfazl Jaafari +6 位作者 Tran Van Phong Hoang Phan Hai Yen Tran Thi Tuyen Vu Van Luong Huu Duy Nguyen Hiep Van Le Loke Kok Foong 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期333-342,共10页
Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT... Improving the accuracy of flood prediction and mapping is crucial for reducing damage resulting from flood events.In this study,we proposed and validated three ensemble models based on the Best First Decision Tree(BFT)and the Bagging(Bagging-BFT),Decorate(Bagging-BFT),and Random Subspace(RSS-BFT)ensemble learning techniques for an improved prediction of flood susceptibility in a spatially-explicit manner.A total number of 126 historical flood events from the Nghe An Province(Vietnam)were connected to a set of 10 flood influencing factors(slope,elevation,aspect,curvature,river density,distance from rivers,flow direction,geology,soil,and land use)for generating the training and validation datasets.The models were validated via several performance metrics that demonstrated the capability of all three ensemble models in elucidating the underlying pattern of flood occurrences within the research area and predicting the probability of future flood events.Based on the Area Under the receiver operating characteristic Curve(AUC),the ensemble Decorate-BFT model that achieved an AUC value of 0.989 was identified as the superior model over the RSS-BFT(AUC=0.982)and Bagging-BFT(AUC=0.967)models.A comparison between the performance of the models and the models previously reported in the literature confirmed that our ensemble models provided a reliable estimate of flood susceptibilities and their resulting susceptibility maps are trustful for flood early warning systems as well as development of mitigation plans. 展开更多
关键词 Machine learning ensemble learners Hybrid modeling
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部