期刊文献+

基于工况分类的熟料f-CaO含量预测方法研究

Study on prediction method of clinker f-CaO content based on working condition classification
下载PDF
导出
摘要 为实现游离氧化钙(f-CaO)含量的持续稳定预测,采用集成学习算法研究软测量实现方法。针对烧成系统中的复杂工况,首先展开工况分类,然后对每一类工况构建集成学习预测模型,同时引入在线建模的方式提高模型的泛化能力和时间有效性,解决了模型短期有效和重复性建模的问题。集成学习算法基于bagging的思想进行对多种弱学习器构建模型,通过检验发现模型效果显著优于单一模型效果。该算法融合了工艺生产特点和多种回归算法,具有较好的稳定性和提前性,实现了水泥质量的实时控制,助力水泥厂高质量稳定生产。 In order to achieve continuous and stable prediction of free calcium oxide(f-CaO)content,this paper uses ensemble learn⁃ing algorithm to study the soft measurement methods.For the complex working conditions in the firing system,the classification of work⁃ing conditions is firstly carried out,and then an integrated learning prediction model is constructed for each type of working condition,at the same time,the introduction of online modeling improves the generalization ability and time effectiveness of the model,solving the problems of short-term and repetitive modeling.The integrated learning algorithm is based on the idea of bagging to construct models for various weak learners,and it is found that the effect of the model is significantly better than that of a single model through inspec⁃tion.The algorithm combines the characteristics of process production and multiple regression algorithms,has good stability and ad⁃vanceness,realizes real-time control of cement quality,and helps cement plants to produce high-quality and stable products.
作者 崔保华 张成伟 李慧霞 陈克政 郭文洁 孙战军 Cui Baohua;Zhang Chengwei;Li Huixia;Chen Kezheng;Guo Wenjie;Sun Zhanjun(Sinoma International intelligent Technology Co.,Ltd.,NanJing,210036,China;不详)
出处 《水泥工程》 CAS 2024年第1期1-5,15,共6页 Cement Engineering
基金 中国建材集团攻关专项。
关键词 F-CAO 集成学习 软测量 工况分类 在线建模 f-CaO ensemble learning soft measurement classification of working conditions online modeling
  • 相关文献

参考文献12

二级参考文献81

  • 1刘文光,王孝红,于宏亮,吴敬建.基于LS-SVM的水泥熟料煅烧过程f-CaO软测量研究[J].控制工程,2008,15(S2):85-88. 被引量:13
  • 2祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:185
  • 3罗可,林睦纲,郗东妹.数据挖掘中分类算法综述[J].计算机工程,2005,31(1):3-5. 被引量:63
  • 4杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:189
  • 5HanJia-wei,KamberM数据挖掘概念与技术(第2版)[M].范明,孟小峰,译.北京:机械工业出版社,2007:188-200. 被引量:2
  • 6Phyu T N. Survey of Classification Techniques in Data Mining [C]//Proeeedings of the International MultiConference of Engi- neers and Computer Scientists. Hong Kong, 2009(1). 被引量:1
  • 7El-shafie A, Muklisin M, Najah Ali A, et al. Performance of arti- ficial neural network and regression techniques for rainfall-run- off prediction[J]. International Journal of the Physical Sciences, 2011,6(8) : 1997-2003. 被引量:1
  • 8Selles M A, Schmid S R, Sanchez-Caballero S, et al. Theoretical Model of a Multi-Layered Polymer Coated Steel-Strip Ironing Process Using a Neural Network[C] //Materials Science Fo- rum. Switzerland, 2012 : 139-144. 被引量:1
  • 9Jiten P, Choi S-K. Classification approach for reliability-based topology optimization using probabilistic neural networks[J]. Structural and Multidiseiplinary Optimization, 2012,45 (4) : 529- 543. 被引量:1
  • 10EI-Emary I M, Ramakrishnan S. On the Application of Various Probabilistic Neural Networks in Solving Different Pattern Clas- sification Problems[J]. World Applied Sciences Journal, 2008, 4 (6) :772-780. 被引量:1

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部