Despite significant successes achieved in knowledge discovery,traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data,such as imbalanced,high-dimensional,noisy ...Despite significant successes achieved in knowledge discovery,traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data,such as imbalanced,high-dimensional,noisy data,etc.The reason behind is that it is difficult for these methods to capture multiple characteristics and underlying structure of data.In this context,it becomes an important topic in the data mining field that how to effectively construct an efficient knowledge discovery and mining model.Ensemble learning,as one research hot spot,aims to integrate data fusion,data modeling,and data mining into a unified framework.Specifically,ensemble learning firstly extracts a set of features with a variety of transformations.Based on these learned features,multiple learning algorithms are utilized to produce weak predictive results.Finally,ensemble learning fuses the informative knowledge from the above results obtained to achieve knowledge discovery and better predictive performance via voting schemes in an adaptive way.In this paper,we review the research progress of the mainstream approaches of ensemble learning and classify them based on different characteristics.In addition,we present challenges and possible research directions for each mainstream approach of ensemble learning,and we also give an extra introduction for the combination of ensemble learning with other machine learning hot spots such as deep learning,reinforcement learning,etc.展开更多
In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ...In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.展开更多
Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling...Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling better service to be provided to them.Performing power load profile clustering is the basis for mining the users’electricity consumption behavior.By examining the complexity,randomness,and uncertainty of the users’electricity consumption behavior,this paper proposes an ensemble clustering method to analyze this behavior.First,principle component analysis(PCA)is used to reduce the dimensions of the data.Subsequently,the single clustering method is used,and the majority is selected for integrated clustering.As a result,the users’electricity consumption behavior is classified into different modes,and their characteristics are analyzed in detail.This paper examines the electricity power data of 19 real users in China for simulation purposes.This manuscript provides a thorough analysis along with suggestions for the users’weekly electricity consumption behavior.The results verify the effectiveness of the proposed method.展开更多
基金the National Natural Science Foundation of China(Grant Nos.61722205,61751205,61572199,61502174,61872148,and U 1611461)the grant from the key research and development program of Guangdong province of China(2018B010107002)+1 种基金the grants from Science and Technology Planning Project of Guangdong Province,China(2016A050503015,2017A030313355)the grant from the Guangzhou science and technology planning project(201704030051).
文摘Despite significant successes achieved in knowledge discovery,traditional machine learning methods may fail to obtain satisfactory performances when dealing with complex data,such as imbalanced,high-dimensional,noisy data,etc.The reason behind is that it is difficult for these methods to capture multiple characteristics and underlying structure of data.In this context,it becomes an important topic in the data mining field that how to effectively construct an efficient knowledge discovery and mining model.Ensemble learning,as one research hot spot,aims to integrate data fusion,data modeling,and data mining into a unified framework.Specifically,ensemble learning firstly extracts a set of features with a variety of transformations.Based on these learned features,multiple learning algorithms are utilized to produce weak predictive results.Finally,ensemble learning fuses the informative knowledge from the above results obtained to achieve knowledge discovery and better predictive performance via voting schemes in an adaptive way.In this paper,we review the research progress of the mainstream approaches of ensemble learning and classify them based on different characteristics.In addition,we present challenges and possible research directions for each mainstream approach of ensemble learning,and we also give an extra introduction for the combination of ensemble learning with other machine learning hot spots such as deep learning,reinforcement learning,etc.
基金Supported by the National Natural Science Foundation of China (60661003)the Research Project Department of Education of Jiangxi Province (GJJ10566)
文摘In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large.
基金supported by the State Grid Science and Technology Project (No.5442AI90009)Natural Science Foundation of China (No. 6170337)
文摘Due to the increase in the number of smart meter devices,a power grid generates a large amount of data.Analyzing the data can help in understanding the users’electricity consumption behavior and demands;thus,enabling better service to be provided to them.Performing power load profile clustering is the basis for mining the users’electricity consumption behavior.By examining the complexity,randomness,and uncertainty of the users’electricity consumption behavior,this paper proposes an ensemble clustering method to analyze this behavior.First,principle component analysis(PCA)is used to reduce the dimensions of the data.Subsequently,the single clustering method is used,and the majority is selected for integrated clustering.As a result,the users’electricity consumption behavior is classified into different modes,and their characteristics are analyzed in detail.This paper examines the electricity power data of 19 real users in China for simulation purposes.This manuscript provides a thorough analysis along with suggestions for the users’weekly electricity consumption behavior.The results verify the effectiveness of the proposed method.