期刊文献+

局部关注支持向量机算法 被引量:10

Local focus support vector machine algorithm
下载PDF
导出
摘要 针对训练数据集的不均衡性这一问题,结合采样方法和集成方法,提出一种集成支持向量机分类算法。该算法首先对不均衡的训练集进行非监督聚类;然后依靠其底层的局部关注支持向量机进行数据集局部划分,以精确把控数据集间的局部特征;最后通过顶层支持向量机进行分类预测。在UCI数据集上的评测结果显示,该算法与当前流行的算法(如基于采样的核化少数类过采样技术(K-SMOTE)、基于集成的梯度提升决策树(GTB)和代价敏感集成算法(Ada Cost)等)相比,分类效果有明显提升,能在一定程度上解决数据集的不均衡问题。 Aiming at the imbalance of training data set,an integrated support vector machine classification algorithm was proposed by combining sampling method with ensemble method.Firstly,unsupervised clustering was performed on an unbalanced training set,then the underlying local attention support vector machine was used to partition the data set so as to precisely control the local features of data sets.FinaQy,top support vector machine was used to predicte classification.The evaluation results on UCI dataset show that compared with the popular algorithms such as sampling based Kemelized Synthetic Minority Over-sampling TEchnique(K-SMOTE),integration based Gradient Tree Boosting(GTB)and cost sensitive ensemble algorithm(AdaCost),the proposed support vector machine algorithm can significantly improve the classification effect and solve the problem of unbalanced data set to a certain extent.
作者 周于皓 张红玲 李芳菲 祁鹏 ZHOU Yuhao;ZHANG Hongling;LI Fangfei;QI Peng(College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China;School of Media and Communication,Wuhan Textile University,Wuhan Hubei 430000,China)
出处 《计算机应用》 CSCD 北大核心 2018年第4期945-948,954,共5页 journal of Computer Applications
关键词 非均衡数据集 支持向量机 集成算法 非监督聚类 unbalanced data set Support Vector Machine(SVM) ensemble algorithm unsupervised clustering
  • 相关文献

参考文献10

二级参考文献73

  • 1Veropoulos K., Campbell C. and Crisfianini N. Controlling the Sensitivity of Support Vector Machines[A]. Proceedings of the 16^th International Joint Conference on Artificial Intelligence (IJCAI 1999) [C]. Stockholm, Sweden: IJCAI Press, 1999:55 - 60. 被引量:1
  • 2R. Akbani, S. Kwek and N. Japkowicz. Applying Support Vector Machines to Imbalanced Datasets [ A ]. Proceedings of the 15th European Conference on Machine Learning (ECML 2004) [ C]. Italy: Springer Press, 2004.39 - 50. 被引量:1
  • 3Yuan J., Li J., and Zhang B. Learning Concepts from Large Scale Imbalanced Data Sets using Support Ouster Machines [ A].Proceedings of the 14th annul ACM International Conference on Multimedia[ C ]. Santa Barbara: ACM Press, 2006. 441 - 450. 被引量:1
  • 4P. Kang and S. Cho. EUS SVMs: Ensemble of Under - Sampied SVMs for Data Imbalance Problems [A]. Proceedings of the 13^th International Conference on Neural Information Processing (ICONIP 2006) [C]. Hong Kong: Springer Press, 2006: 837 - 846. 被引量:1
  • 5T Imam, K M Ting, J Kamruzzaman. z - SVM: An SVM for Improved Classification of Imbalanced Data [ A ]. Proceedings of the 19th Australian Joint Conference on Artifical Intelligence (AJCAI 2006) [ C]. Hobart, Australia: Springer Press, 2006. 264 - 273. 被引量:1
  • 6Chawla N V, Bowyer K W, Hall L O, Kegelmeyer W. P. Smote: Synthetic Minority Over-sampling Technique[ J]. Journal of Artificial Intelligence Research. (JAIR) ,2002,16:321 - 357. 被引量:1
  • 7Y. Liu,A.An,X.Huang. Boosting prediction accuracy on irn- balanced datasets with SVM ensembles[ A]. Proceedings of the 10th Pacific- Asia Conference on Knowledge Discovery and Data Mining ( PAKDD 2006) [ C ]. Singapore: Springer Press, 2006:107 - 118. 被引量:1
  • 8J T Kwok, I W Tsang. The Pre-image Problem in Kernel Methods [J]. IEEE. Transactions on Neural Networks,2004, 15(6) : 1517- 1525. 被引量:1
  • 9J C Crower. Adding a Point to Vector Diagrams In Multivariate Analysis [ J]. Biometrika, 1968,55 (3) : 582 - 585. 被引量:1
  • 10凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35

共引文献160

同被引文献82

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部