Mesenchymal stem cells(MSCs)are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing.MSC-based treatments are generally considered a safe procedure,however,the long-ter...Mesenchymal stem cells(MSCs)are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing.MSC-based treatments are generally considered a safe procedure,however,the long-term results obtained up to now are far from satisfactory.The main causes of these therapeutic limitations are inefficient homing,engraftment,and osteogenic differentiation.Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells.Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation.These strategies could range from a simple modification of the culture conditions,known as cell-preconditioning,to the genetic modification of the cells to avoid cellular senescence.Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation,mainly by the use of bioactive or biomimetic scaffolds,although alternative approaches will also be discussed.This review aims to summarize several of the most recent approaches,providing an up-to-date view of the main developments in MSCbased regenerative techniques.展开更多
Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion,which encodes a long glutamine tract(polyglutamine)in the respective wild-type protein causing misfolding...Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion,which encodes a long glutamine tract(polyglutamine)in the respective wild-type protein causing misfolding and protein aggregation.Clinical features of polyglutamine spinocerebellar ataxias include neuronal aggregation,mitochondrial dysfunction,decreased proteasomal activity,and autophagy impairment.Mutant polyglutamine protein aggregates accumulate within neurons and cause neural dysfunction and death in specific regions of the central nervous system.Spinocerebellar ataxias are mostly characterized by progressive ataxia,speech and swallowing problems,loss of coordination and gait deficits.Over the past decade,efforts have been made to ameliorate disease symptoms in patients,yet no cure is available.Previous studies have been proposing the use of stem cells as promising tools for central nervous system tissue regeneration.So far,pre-clinical trials have shown improvement in various models of neurodegenerative diseases following stem cell transplantation,including animal models of spinocerebellar ataxia types 1,2,and 3.However,contrasting results can be found in the literature,depending on the animal model,cell type,and route of administration used.Nonetheless,clinical trials using cellular implants into degenerated brain regions have already been applied,with the expectation that these cells would be able to differentiate into the specific neuronal subtypes and re-populate these regions,reconstructing the affected neural network.Meanwhile,the question of how feasible it is to continue such treatments remains unanswered,with long-lasting effects being still unknown.To establish the value of these advanced therapeutic tools,it is important to predict the actions of the transplanted cells as well as to understand which cell type can induce the best outcomes for each disease.Further studies are needed to determine the best route of administration,without neglecting the possible risks of repetitive transplant展开更多
AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METH...AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METHODS Our retrospective cohort included 247 patients receiving a first, T-replete, human leukocyte antigen-matched allogeneic PBHCT and treated between 2001 and2012. Correlations were calculated using the Pearson product-moment correlation coefficient. Overall survival and progression free survival curves were generated using the Kaplan-Meier method and compared using the log-rank test.RESULTS Neutrophil engraftment was significantly faster after reduced intensity TBI based conditioning [reduced intensity conditioning(RIC) + TBI] and > 4 × 10~6 CD34+cells/kg infused. A higher total nucleated cell dose led to a higher incidence of grade II-IV acute graft-versus-host disease in the myeloablative + TBI regimen group(P = 0.03), but no significant difference in grade III-IV graft-versus-host disease. A higher total nucleated cell dose was also associated with increased incidence of moderate/severe chronic graft-versus-host disease, regardless ofconditioning regimen. Overall and progression-free survival were significantly better in patients with a RIC + TBI regimen and total nucleated cell dose > 8 ×10~8/kg(3 years, overall survival: 70% vs 38%, P = 0.02, 3 years, progression free survival: 64% vs 38%, P = 0.02).CONCLUSION TBI and conditioning intensity may alter the relationship between infused cell doses and outcomes after PBHCT. Immune cell subsets may predict improved survival after unmanipulated PBHCT.展开更多
Understanding the nature of cell surface markers on exfoliated colonic cells is a crucial step in establishing criteria for a normally functioning mucosa. We have found that colonic cells isolated from stool samples (...Understanding the nature of cell surface markers on exfoliated colonic cells is a crucial step in establishing criteria for a normally functioning mucosa. We have found that colonic cells isolated from stool samples (SCSR-010 Fecal Cell Isolation Kit, NonInvasive Technologies, Elkridge, MD), preserved at room temperature for up to one week, with viability of >85% and low levels of apoptosis (8% - 10%) exhibit two distinct cell size subpopulations, in the 2.5 μM - 5.0 μM and 5.0 μM - 8.0 μM range. In addition to IgA, about 60% of the cells expressed a novel heterodimeric IgA/IgG immunoglobulin that conferred a broad-spectrum cell mediated cytotoxicity against tumor cells. In a cohort of 58 subjects the exclusive absence of this immunoglobulin in two African-Americans was suggestive of a germline deletion. Serial cultures in stem cell medium retained the expression of this heterodimer. Since a majority of the cystic cells expressed the stem cell markers Lgr5 and Musashi-1 we termed these cells as gastrointestinal progenitor stem cells (GIP-C**). CXCR-4, the cytokine co-receptor for HIV was markedly expressed. These cells also expressed CD20, IgA, IgG, CD45, and COX-2. We assume that they originated from mature columnar epithelium by dedifferentiation. Our observations indicate that we have a robust noninvasive method to study mucosal pathophysiology and a direct method to create a database for applications in regenerative medicine.展开更多
Mesenchymal stromal/stem cells(MSCs) are multipotent cells under consideration as a potential new therapy for a variety of inflammatory diseases including certain neurological disorders. It is generally thought that t...Mesenchymal stromal/stem cells(MSCs) are multipotent cells under consideration as a potential new therapy for a variety of inflammatory diseases including certain neurological disorders. It is generally thought that the efficacy of cell therapy in attenuating damage after ischemia, inflammation, or injury depends on the quantity of transplanted cells recruited to the target tissue. However, only a small number of systematically infused MSCs can effectively migrate to target sites, which significantly decreases the efficacy of exogenous cell-based therapy. In this review, we discuss specific factors influencing MSC migration, and summarize current strategies that effectively promote the motility of MSCs. In addition, we describe several protocols to improve the migration of stromal cells into the nervous system and, therefore,enhance the efficiency of engraftment as means of treating neurological disorders.展开更多
Primary immunodeficiency disorders (PIDs) result from inborn errors in immunity.Susceptibility to infections and oftentimes severe autoimmunity pose life-threatening risks to patients with these disorders.Hematopoieti...Primary immunodeficiency disorders (PIDs) result from inborn errors in immunity.Susceptibility to infections and oftentimes severe autoimmunity pose life-threatening risks to patients with these disorders.Hematopoietic cell transplant (HCT) remains the only curative option for many.Severe combined immunodeficiency disorders (SCID) most commonly present at the time of birth and typically require emergent HCT in the first few weeks of life.HCT poses an unusual challenge for PIDs.Donor source and conditioning regimen often impact the outcome of immune reconstitution after HCT in PIDs.The use of matched or unmatched, as well as related versus unrelated donor has resulted in variable outcomes for different subsets of PIDs.Additionally, there is significant variability in the success of engraftment even for a single patient’s lymphocyte subpopulations.While certain cell lines do well without a conditioning regimen, others will not reconstitute unless conditioning is used.The decision to proceed with a conditioning regimen in an already immunocompromised host is further complicated by the fact that alkylating agents should be avoided in radiosensitive PIDs.This manuscript reviews some of the unique elements of HCT in PIDs and evidence-based approaches to transplant in patients with these rare and challenging disorders.展开更多
When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that ar...When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease(Gv HD). The risk for Gv HD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause Gv HD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe Gv HD, thus making HSPC transplantations more efficient and ultimately safer.展开更多
Non-myeloablative regimens for host conditioning have been widely used in clinical hematopoietic stem cell transplantation due to their reduced toxicity on the recipients. But a milder conditioning regimen may require...Non-myeloablative regimens for host conditioning have been widely used in clinical hematopoietic stem cell transplantation due to their reduced toxicity on the recipients. But a milder conditioning regimen may require a higher engrafting ability of donor stem cells in competing with endogenous stem cells. Thus, new strategies for enhancing the competitiveness of donor stem cells in non-myeloablative recipients would have important implications for current clinical stem cell trans- plantation. It is known that the absence of p18INK4C (p18) gene can enhance the self-renewal potential of hematopoietic stem cells (HSCs). We applied the approach of competitive bone marrow trans- plantation to evaluate the impact of p18 gene deletion on long-term engraftment of HSCs in sub- lethally irradiated hosts. We found that p18?/? HSCs had a significant advantage over wild-type HSCs during long-term engraftment in the mouse recipients that received a sub-lethal irradiation (5-Gy). The engraftment efficiency of p18?/? HSCs in the sub-lethally irradiated recipients was similar to that in the lethally irradiated (10-Gy) recipients. Our current study demonstrates that enhanced engraftment of donor HSCs in the absence of p18 does not strictly depend on the dose of irradiation used for host conditioning. Therefore, p18 might serve as a potential drug target for increasing the efficacy of stem cell transplant in the patients that are preconditioned with either a myeloablative or non-myeloablative regimen.展开更多
Objective: To evaluate the significance of two-color interphase fluorescence in situ hybridization (FISH) using X and Y centromere probe in the engraftment estimation and minimal residual disease (MRD) monitoring afte...Objective: To evaluate the significance of two-color interphase fluorescence in situ hybridization (FISH) using X and Y centromere probe in the engraftment estimation and minimal residual disease (MRD) monitoring after allogeneic stem cell transplantation (alloSCT). Methods: Samples from 12 cases patients in different periods after alloSCT were detected by interphase FISH. Results: All of the 12 patients were proved to obtain engraftment 22–35 days after alloSCT. While traditional karyotype showed as 100%XX or 100%XY invariably, FISH showed different percentages of donor original sex chromosome. Conclusion: Two-color interphase FISH is a more sensitive and simple test for engraftment evaluation and MRD monitoring post SCT, though, it can not entirely replace traditional karyotype analysis and gene detection by RT-PCR.展开更多
Background In bone marrow transplant patients, the microenvironment in bone marrow is damaged after chemotherapy or radiotherapy. Subsequent to allogenic hematopoietic stem cell transplantation in patients with clinic...Background In bone marrow transplant patients, the microenvironment in bone marrow is damaged after chemotherapy or radiotherapy. Subsequent to allogenic hematopoietic stem cell transplantation in patients with clinically successful engraftments, the source of mesenchymal stem cells (MSCs) remains controversial. To further verify the stimulatory effect of the simultaneous transplantation of cells from second donors on engraftment success for hematopoietic stem cell transplantation in support of donor MSCs engraftments, the aim of this study is to monitor the dynamics of the engraftment of bone marrow-derived MSCs in patients after transplantation with mismatched-sex hematopoietic stem and third-party cells. Methods In this study, the hematopoietic stem cells from 32 clinical donors of different sexes that resulted in successful engraftments were selected for transplantation and were classified into three groups for research purposes: group A consisted of 14 cases of transplantation with bone marrow and recruited peripheral hematopoietic stem cell transplantation, group B contained 8 cases of simultaneous re-transfusion of MSCs from the second donor, and group C contained 10 cases of simultaneous re-transfusion of umbilical blood from the second donor. The bone marrow from 32 patients with successful engraftments of hematopoietic transplantation were selected and sub-cultured with MSCs. Flow cytometry (FCM) was used to measure the expression of surface antigens on MSCs. Denaturing high-performance liquid chromatography (DHPLC) in combination with polymerase chain reaction amplification of short tandem repeats (STR- PCR) was used to measure the engraftment status of fifth-generation MSCs in patients. Fluorescence in situ hybridization (FISH) revealed the sex origin of the fifth-generation MSCs in 32 patients. Dynamic examinations were performed on patients receiving donor transplantations. Results The progenies of fifth-generation MSCs were successfully cultured in 32 cases. The results of FCM展开更多
文摘Mesenchymal stem cells(MSCs)are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing.MSC-based treatments are generally considered a safe procedure,however,the long-term results obtained up to now are far from satisfactory.The main causes of these therapeutic limitations are inefficient homing,engraftment,and osteogenic differentiation.Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells.Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation.These strategies could range from a simple modification of the culture conditions,known as cell-preconditioning,to the genetic modification of the cells to avoid cellular senescence.Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation,mainly by the use of bioactive or biomimetic scaffolds,although alternative approaches will also be discussed.This review aims to summarize several of the most recent approaches,providing an up-to-date view of the main developments in MSCbased regenerative techniques.
基金funded by national fundsthrough the Foundation for Science and Technology (FCT)-project UIDB/50026/2020 and UIDP/50026/2020by the National Ataxia Foundation (NAF)
文摘Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion,which encodes a long glutamine tract(polyglutamine)in the respective wild-type protein causing misfolding and protein aggregation.Clinical features of polyglutamine spinocerebellar ataxias include neuronal aggregation,mitochondrial dysfunction,decreased proteasomal activity,and autophagy impairment.Mutant polyglutamine protein aggregates accumulate within neurons and cause neural dysfunction and death in specific regions of the central nervous system.Spinocerebellar ataxias are mostly characterized by progressive ataxia,speech and swallowing problems,loss of coordination and gait deficits.Over the past decade,efforts have been made to ameliorate disease symptoms in patients,yet no cure is available.Previous studies have been proposing the use of stem cells as promising tools for central nervous system tissue regeneration.So far,pre-clinical trials have shown improvement in various models of neurodegenerative diseases following stem cell transplantation,including animal models of spinocerebellar ataxia types 1,2,and 3.However,contrasting results can be found in the literature,depending on the animal model,cell type,and route of administration used.Nonetheless,clinical trials using cellular implants into degenerated brain regions have already been applied,with the expectation that these cells would be able to differentiate into the specific neuronal subtypes and re-populate these regions,reconstructing the affected neural network.Meanwhile,the question of how feasible it is to continue such treatments remains unanswered,with long-lasting effects being still unknown.To establish the value of these advanced therapeutic tools,it is important to predict the actions of the transplanted cells as well as to understand which cell type can induce the best outcomes for each disease.Further studies are needed to determine the best route of administration,without neglecting the possible risks of repetitive transplant
文摘AIM To investigate infused hematopoietic cell doses and their interaction with conditioning regimen intensity +/-total body irradiation(TBI) on outcomes after peripheral blood hematopoietic cell transplant(PBHCT).METHODS Our retrospective cohort included 247 patients receiving a first, T-replete, human leukocyte antigen-matched allogeneic PBHCT and treated between 2001 and2012. Correlations were calculated using the Pearson product-moment correlation coefficient. Overall survival and progression free survival curves were generated using the Kaplan-Meier method and compared using the log-rank test.RESULTS Neutrophil engraftment was significantly faster after reduced intensity TBI based conditioning [reduced intensity conditioning(RIC) + TBI] and > 4 × 10~6 CD34+cells/kg infused. A higher total nucleated cell dose led to a higher incidence of grade II-IV acute graft-versus-host disease in the myeloablative + TBI regimen group(P = 0.03), but no significant difference in grade III-IV graft-versus-host disease. A higher total nucleated cell dose was also associated with increased incidence of moderate/severe chronic graft-versus-host disease, regardless ofconditioning regimen. Overall and progression-free survival were significantly better in patients with a RIC + TBI regimen and total nucleated cell dose > 8 ×10~8/kg(3 years, overall survival: 70% vs 38%, P = 0.02, 3 years, progression free survival: 64% vs 38%, P = 0.02).CONCLUSION TBI and conditioning intensity may alter the relationship between infused cell doses and outcomes after PBHCT. Immune cell subsets may predict improved survival after unmanipulated PBHCT.
文摘Understanding the nature of cell surface markers on exfoliated colonic cells is a crucial step in establishing criteria for a normally functioning mucosa. We have found that colonic cells isolated from stool samples (SCSR-010 Fecal Cell Isolation Kit, NonInvasive Technologies, Elkridge, MD), preserved at room temperature for up to one week, with viability of >85% and low levels of apoptosis (8% - 10%) exhibit two distinct cell size subpopulations, in the 2.5 μM - 5.0 μM and 5.0 μM - 8.0 μM range. In addition to IgA, about 60% of the cells expressed a novel heterodimeric IgA/IgG immunoglobulin that conferred a broad-spectrum cell mediated cytotoxicity against tumor cells. In a cohort of 58 subjects the exclusive absence of this immunoglobulin in two African-Americans was suggestive of a germline deletion. Serial cultures in stem cell medium retained the expression of this heterodimer. Since a majority of the cystic cells expressed the stem cell markers Lgr5 and Musashi-1 we termed these cells as gastrointestinal progenitor stem cells (GIP-C**). CXCR-4, the cytokine co-receptor for HIV was markedly expressed. These cells also expressed CD20, IgA, IgG, CD45, and COX-2. We assume that they originated from mature columnar epithelium by dedifferentiation. Our observations indicate that we have a robust noninvasive method to study mucosal pathophysiology and a direct method to create a database for applications in regenerative medicine.
基金Supported by the National Natural Science Foundation of China(Nos.81471201 and 81171089)
文摘Mesenchymal stromal/stem cells(MSCs) are multipotent cells under consideration as a potential new therapy for a variety of inflammatory diseases including certain neurological disorders. It is generally thought that the efficacy of cell therapy in attenuating damage after ischemia, inflammation, or injury depends on the quantity of transplanted cells recruited to the target tissue. However, only a small number of systematically infused MSCs can effectively migrate to target sites, which significantly decreases the efficacy of exogenous cell-based therapy. In this review, we discuss specific factors influencing MSC migration, and summarize current strategies that effectively promote the motility of MSCs. In addition, we describe several protocols to improve the migration of stromal cells into the nervous system and, therefore,enhance the efficiency of engraftment as means of treating neurological disorders.
文摘Primary immunodeficiency disorders (PIDs) result from inborn errors in immunity.Susceptibility to infections and oftentimes severe autoimmunity pose life-threatening risks to patients with these disorders.Hematopoietic cell transplant (HCT) remains the only curative option for many.Severe combined immunodeficiency disorders (SCID) most commonly present at the time of birth and typically require emergent HCT in the first few weeks of life.HCT poses an unusual challenge for PIDs.Donor source and conditioning regimen often impact the outcome of immune reconstitution after HCT in PIDs.The use of matched or unmatched, as well as related versus unrelated donor has resulted in variable outcomes for different subsets of PIDs.Additionally, there is significant variability in the success of engraftment even for a single patient’s lymphocyte subpopulations.While certain cell lines do well without a conditioning regimen, others will not reconstitute unless conditioning is used.The decision to proceed with a conditioning regimen in an already immunocompromised host is further complicated by the fact that alkylating agents should be avoided in radiosensitive PIDs.This manuscript reviews some of the unique elements of HCT in PIDs and evidence-based approaches to transplant in patients with these rare and challenging disorders.
基金Supported by a fellowship obt-ained by Nolt-e MA from t-he Landst-einer Foundat-ion for Blood Transfusion Research(www.lsbr.nl),No.#1014
文摘When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease(Gv HD). The risk for Gv HD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause Gv HD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe Gv HD, thus making HSPC transplantations more efficient and ultimately safer.
基金partially supported by the Outstanding Award for Chinese Oversea Scholar by the National Natural Science Foundation of China(Grant No.30228011)the General Award of National Natural Science Foundation of China(Grant No.39970709).
文摘Non-myeloablative regimens for host conditioning have been widely used in clinical hematopoietic stem cell transplantation due to their reduced toxicity on the recipients. But a milder conditioning regimen may require a higher engrafting ability of donor stem cells in competing with endogenous stem cells. Thus, new strategies for enhancing the competitiveness of donor stem cells in non-myeloablative recipients would have important implications for current clinical stem cell trans- plantation. It is known that the absence of p18INK4C (p18) gene can enhance the self-renewal potential of hematopoietic stem cells (HSCs). We applied the approach of competitive bone marrow trans- plantation to evaluate the impact of p18 gene deletion on long-term engraftment of HSCs in sub- lethally irradiated hosts. We found that p18?/? HSCs had a significant advantage over wild-type HSCs during long-term engraftment in the mouse recipients that received a sub-lethal irradiation (5-Gy). The engraftment efficiency of p18?/? HSCs in the sub-lethally irradiated recipients was similar to that in the lethally irradiated (10-Gy) recipients. Our current study demonstrates that enhanced engraftment of donor HSCs in the absence of p18 does not strictly depend on the dose of irradiation used for host conditioning. Therefore, p18 might serve as a potential drug target for increasing the efficacy of stem cell transplant in the patients that are preconditioned with either a myeloablative or non-myeloablative regimen.
文摘Objective: To evaluate the significance of two-color interphase fluorescence in situ hybridization (FISH) using X and Y centromere probe in the engraftment estimation and minimal residual disease (MRD) monitoring after allogeneic stem cell transplantation (alloSCT). Methods: Samples from 12 cases patients in different periods after alloSCT were detected by interphase FISH. Results: All of the 12 patients were proved to obtain engraftment 22–35 days after alloSCT. While traditional karyotype showed as 100%XX or 100%XY invariably, FISH showed different percentages of donor original sex chromosome. Conclusion: Two-color interphase FISH is a more sensitive and simple test for engraftment evaluation and MRD monitoring post SCT, though, it can not entirely replace traditional karyotype analysis and gene detection by RT-PCR.
文摘Background In bone marrow transplant patients, the microenvironment in bone marrow is damaged after chemotherapy or radiotherapy. Subsequent to allogenic hematopoietic stem cell transplantation in patients with clinically successful engraftments, the source of mesenchymal stem cells (MSCs) remains controversial. To further verify the stimulatory effect of the simultaneous transplantation of cells from second donors on engraftment success for hematopoietic stem cell transplantation in support of donor MSCs engraftments, the aim of this study is to monitor the dynamics of the engraftment of bone marrow-derived MSCs in patients after transplantation with mismatched-sex hematopoietic stem and third-party cells. Methods In this study, the hematopoietic stem cells from 32 clinical donors of different sexes that resulted in successful engraftments were selected for transplantation and were classified into three groups for research purposes: group A consisted of 14 cases of transplantation with bone marrow and recruited peripheral hematopoietic stem cell transplantation, group B contained 8 cases of simultaneous re-transfusion of MSCs from the second donor, and group C contained 10 cases of simultaneous re-transfusion of umbilical blood from the second donor. The bone marrow from 32 patients with successful engraftments of hematopoietic transplantation were selected and sub-cultured with MSCs. Flow cytometry (FCM) was used to measure the expression of surface antigens on MSCs. Denaturing high-performance liquid chromatography (DHPLC) in combination with polymerase chain reaction amplification of short tandem repeats (STR- PCR) was used to measure the engraftment status of fifth-generation MSCs in patients. Fluorescence in situ hybridization (FISH) revealed the sex origin of the fifth-generation MSCs in 32 patients. Dynamic examinations were performed on patients receiving donor transplantations. Results The progenies of fifth-generation MSCs were successfully cultured in 32 cases. The results of FCM