This research applies the principles of anthropometrics to improve existing size charts together with somatotyping techniques to define the physique of the Hong Kong-Chinese Fire Services recruits. The research result...This research applies the principles of anthropometrics to improve existing size charts together with somatotyping techniques to define the physique of the Hong Kong-Chinese Fire Services recruits. The research results proved that age does not correspond with either body measurements or somatotype components. The results of the study demonstrates that the somatotype component (i. e., endomorphy, mesomorphy and ectomorphy) has low to moderate correlation with body girth and body length measurements.展开更多
Introduction and Objective: We investigated the association of endo-, meso- and ecto-morphic components of somatotype with aerobic power, mid-trunk flexibility and grip strength. Methods: Healthy male (n = 226) and fe...Introduction and Objective: We investigated the association of endo-, meso- and ecto-morphic components of somatotype with aerobic power, mid-trunk flexibility and grip strength. Methods: Healthy male (n = 226) and female (n = 86) subjects, aged 9 - 55 years, sedentary (n = 154) or participating in sports (n = 158) were studied. Anthro-pometrics (height, weight, 8 skin folds, arm and calf circumferences, elbow and knee diameters), maximal exercise O2 uptake, mid trunk flexibility, right and left grip strength were measured. Results: Sedentary adult females were endomorphic with mesomorph tendency, and had low aerobic power (27.8 ± 0.6 ml/Kg·min) and low (48.7 ± 1 Kg) grip strength. Sedentary males (young and adults) and Sports adult males were mesomorph with endomorphic tendency. Sports junior males were balanced mesomorph. Aerobic power was 54.1 ± 0.9 ml/Kg·min in sports young males, 53.8 ± 0.9 ml/Kg·min in sports adult males, 41.2 ± 4.3 ml/Kg·min in sedentary young males, and 39.5 ± 1 ml/Kg·min in sedentary adult males. Grip strength was 89.9 ± 1.7 Kg in sports adult males, 86.7 ± 2 Kg in sedentary adult males, 75.6 ± 2.2 Kg in sports junior males and 52 ± 9.1 Kg in young sedentary males. Step-wise multiple regression analysis of somatotype components on aerobic power revealed dominant negative contribution (P < 0.001) of endomorphy (r<sup>2</sup> = 0.57, 57%), and small but significant positive contributions of mesomorphy (0.6%) and ectomorphy (0.6%): Aerobic power = [56.1 - 4.3 (endomorphy) + (mesomorphy) + 1.4 (ectomorphy)] ± 9.1 SEE. Height and somatotype components accounted for 69% of the variance (R2) in grip strength;height had greatest contribution (60%): Grip Strength = [1.7 (Height) - 6.5 (ectomorphy) - 3.4 (endomorphy) - 2 (mesomorphy) - 200] ± 12.9 SEE. Measured variables accounted for <2% of flexibility variance. Conclusion: Endomorphy contributes greatly and negatively to variance in aerobic power. Body height was the anthropometric variable with the greatest positive association展开更多
文摘This research applies the principles of anthropometrics to improve existing size charts together with somatotyping techniques to define the physique of the Hong Kong-Chinese Fire Services recruits. The research results proved that age does not correspond with either body measurements or somatotype components. The results of the study demonstrates that the somatotype component (i. e., endomorphy, mesomorphy and ectomorphy) has low to moderate correlation with body girth and body length measurements.
文摘Introduction and Objective: We investigated the association of endo-, meso- and ecto-morphic components of somatotype with aerobic power, mid-trunk flexibility and grip strength. Methods: Healthy male (n = 226) and female (n = 86) subjects, aged 9 - 55 years, sedentary (n = 154) or participating in sports (n = 158) were studied. Anthro-pometrics (height, weight, 8 skin folds, arm and calf circumferences, elbow and knee diameters), maximal exercise O2 uptake, mid trunk flexibility, right and left grip strength were measured. Results: Sedentary adult females were endomorphic with mesomorph tendency, and had low aerobic power (27.8 ± 0.6 ml/Kg·min) and low (48.7 ± 1 Kg) grip strength. Sedentary males (young and adults) and Sports adult males were mesomorph with endomorphic tendency. Sports junior males were balanced mesomorph. Aerobic power was 54.1 ± 0.9 ml/Kg·min in sports young males, 53.8 ± 0.9 ml/Kg·min in sports adult males, 41.2 ± 4.3 ml/Kg·min in sedentary young males, and 39.5 ± 1 ml/Kg·min in sedentary adult males. Grip strength was 89.9 ± 1.7 Kg in sports adult males, 86.7 ± 2 Kg in sedentary adult males, 75.6 ± 2.2 Kg in sports junior males and 52 ± 9.1 Kg in young sedentary males. Step-wise multiple regression analysis of somatotype components on aerobic power revealed dominant negative contribution (P < 0.001) of endomorphy (r<sup>2</sup> = 0.57, 57%), and small but significant positive contributions of mesomorphy (0.6%) and ectomorphy (0.6%): Aerobic power = [56.1 - 4.3 (endomorphy) + (mesomorphy) + 1.4 (ectomorphy)] ± 9.1 SEE. Height and somatotype components accounted for 69% of the variance (R2) in grip strength;height had greatest contribution (60%): Grip Strength = [1.7 (Height) - 6.5 (ectomorphy) - 3.4 (endomorphy) - 2 (mesomorphy) - 200] ± 12.9 SEE. Measured variables accounted for <2% of flexibility variance. Conclusion: Endomorphy contributes greatly and negatively to variance in aerobic power. Body height was the anthropometric variable with the greatest positive association