The sorption of 17α-ethinyl estradiol (EE2), bisphenol A (BPA), and 4-n-nonylphenol (NP) in single systems and the sorption of EE2 with different initial aqueous concentrations of BPA or NP were examined using ...The sorption of 17α-ethinyl estradiol (EE2), bisphenol A (BPA), and 4-n-nonylphenol (NP) in single systems and the sorption of EE2 with different initial aqueous concentrations of BPA or NP were examined using three soils. Results showed that all sorption isotherms were nonlinear and fit the Freundlich model. The degree of nonlinearity was in the order BPA (0.537-0.686) 〉 EE2 (0.705-0.858) 〉 NP (0.875-0.0.951) in single systems. The isotherm linearity index of EE2 sorption calculated by the Freundlich model for Loam, Silt Loam and Silt increased from 0.758, 0.705 and 0.858, to 0.889, 0.910 and 0.969, respectively, when BPA concentration increased from 0 to 1000 μg/L, but the effect of NP was comparably minimal. Additionally, EE2 significantly suppressed the sorption of BPA, but insignificantly suppressed that of NE These findings can be attributed to the difference of sorption affinity of EE2, NP and BPA on the hard carbon (e.g., black carbon) of soil organic matter that dominated the sorption in the low equilibrium aqueous concentration range of endocrine-disrupting chemicals (EDCs). Competitive sorption among EDCs presents new challenges for predicting the transport and fate of EDCs under the influence of co-solutes.展开更多
Spatial and temporal distribution of octylphenol (OP) and nonylphenol (NP) in Mai Po Marshes, a subtropical estuarine wetland in Hong Kong, were investigated. Surface water samples were collected every month from ...Spatial and temporal distribution of octylphenol (OP) and nonylphenol (NP) in Mai Po Marshes, a subtropical estuarine wetland in Hong Kong, were investigated. Surface water samples were collected every month from 11 sites during the period of September- December 2004. Concentrations of OP and NP ranged from 11.3 to 348 ng/L and from 29 to 2591 ng/L, respectively. The high levels of NP and OP were found in November and December than in September and October. The levels of OP and NP have no significant spatial differences except September. Total organic matter in the sediments appeared to be an important factor in controlling the fate of these compounds in the aquatic environment.展开更多
Triclosan(TCS)has garnered significant attention due to its widespread use and associated endocrine-disrupting effects.However,its impact on the neuroendocrine system and underlying mechanisms remain poorly understood...Triclosan(TCS)has garnered significant attention due to its widespread use and associated endocrine-disrupting effects.However,its impact on the neuroendocrine system and underlying mechanisms remain poorly understood.Here,we established correlations between TCS exposure and serum sex hormone levels in participants of the National Health and Nutrition Examination Survey(NHANES).Additionally,we investigated TCS’s influence on the neuroendocrine system using adult zebrafish exposed to environmentally relevant concentrations of TCS(0.361–48.2μg/L)for 21 days.Assessment of reproductive and neurotoxicity included histopathological examination and behavioral tests.Transcriptomics,proteomics analyses,and biochemical detection were employed to elucidate mechanisms underlying TCS-induced neuroendocrine disruption.Significant correlations were found between TCS exposure and estradiol,testosterone,and sex hormone-binding globulin levels in NHANES participants.In addition,TCS exposure inhibited ovary development and spermatogenesis in zebrafish.Transcriptomics and proteomics analysis revealed gender-specific key signaling and metabolism-related pathways implicated in TCS-induced reproductive toxicity.Moreover,TCS exposure induced nervous system impairment,as evidenced by histological changes and altered motor behavior,possibly associated with oxidative damage.Correlation analysis further highlighted the potential connection between endocrine system disruption and nervous system impairment following TCS exposure.Overall,this study provided evidence supporting TCS-induced endocrine disruption and offered insights into its underlying mechanisms.展开更多
The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern.As emerging contaminants(ECs)in surface waters,pharmaceutical and personal care prod...The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern.As emerging contaminants(ECs)in surface waters,pharmaceutical and personal care products(PPCPs),and endocrine-disrupting compounds(EDCs)have attracted considerable attention due to their wide occurrence and potential threat to human health.Therefore,a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required.This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals,15 personal care products(PCPs),and 20 EDCs frequently detected in Chinese surface waters.The ECs were primarily detected in China’s densely populated and highly industrialized regions.Most detected PPCPs and EDCs had concentrations between ng/L toμg/L,whereas norfloxacin,caffeine,and erythromycin had relatively high contamination levels,even exceeding 2000 ng/L.Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk,whereas 4-nonylphenol,4-tert-octylphenol,17α-ethinyl estradiol,17β-estradiol,and triclocarban did.This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade,and will aid in the regulation and control of these ECs in Chinese surface waters。展开更多
Currently,many countries and regions worldwide face the challenge of declining population growth due to persistently low rates of female reproduction.Since 2017,China's birth rate has hit historic lows and continu...Currently,many countries and regions worldwide face the challenge of declining population growth due to persistently low rates of female reproduction.Since 2017,China's birth rate has hit historic lows and continued to decline,with the death rate now equaling the birth rate.Concerns have emerged regarding the potential impact of environmental contaminants on reproductive health,including pregnancy loss.Endocrine-disrupting chemicals(EDCs)like phthalate esters(PAEs),bisphenol A(BPA),triclosan(TCS),and perfluoroalkyl substances(PFASs)have raised attention due to their adverse effects on biological systems.While China's 14th Five-Year Plan(2021–2025)for national economic and social development included the treatment of emerging pollutants,including EDCs,there are currently no national appraisal standards or regulatory frameworks for EDCs and their mixtures.Addressing the risk of EDC mixtures is an urgent matter that needs consideration from China's perspective in the near future.In this Perspective,we delve into the link between EDC mixture exposure and pregnancy loss in China.Our focus areas include establishing a comprehensive national plan targeting reproductive-aged women across diverse urban and rural areas,understanding common EDC combinations in women and their surrounding environment,exploring the relationship between EDCs and pregnancy loss via epidemiology,and reconsidering the safety of EDCs,particularly in mixtures and low-dose scenarios.We envision that this study could aid in creating preventive strategies and interventions to alleviate potential risks induced by EDC exposure during pregnancy in China.展开更多
Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life fr...Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life from the fetal stage to adulthood resulting in various health complications The purpose of our study is to compare the concentration levels and association of benzopyrene, bisphenol A and genistein in patients with ovarian tumors and normal control group. We also sort to evaluate the predictive performance of benzopyrene, bisphenol A and genistein in patients with ovarian tumors. Methods: A case-control study was conducted for randomly selected participants involving 30 patients and 30 controls. 30 patients with radiologically diagnosed and histopathological confirmed ovarian tumors were included in the study between January 2022 and December 2022. Urine samples from each group were analyzed using liquid chromatography-mass spectrometry. Descriptive analysis for normally distributed continuous variables was done accordingly. Concentration levels of endocrine-disrupting chemicals were assessed using the Mann-Whitney test. The association of endocrine-disrupting chemicals with pathological ovarian tumors was analyzed using binary logistic regression. Evaluation of the diagnostic performance of endocrine-disrupting chemicals was analyzed using the ROC curve. Results: Overall, patients were significantly (P = 0.000) older than the healthy controls. Mean years (SD) were 36.7 (7.90) and 28.8 years (4.89) for patients and normal women respectively. Endometriomas had the highest incidence of 50%. The level of benzopyrene and bisphenol A in patients was significantly higher than those in the control group, while the level of genistein was significantly higher in normal controls. Benzopyrene and bisphenol A were significantly associated with ovarian cysts, and the incidence of pathological ovarian cysts was positively correlated to these EDCs, with OR value 64.79 (P = 0.005) for benzopyrene and 9.609 (P = 0.001)展开更多
The prostate is an accessory sex gland that develops under precise androgenic control. It is known that hormonal imbalance may disrupt its development predisposing this gland to develop diseases during aging. Although...The prostate is an accessory sex gland that develops under precise androgenic control. It is known that hormonal imbalance may disrupt its development predisposing this gland to develop diseases during aging. Although the hypothesis regarding earlier origins of prostate diseases was proposed many years ago, the mechanisms underlying this complex phenomenon are poorly understood. Therefore, the aim of this study was to evaluate the prostates of old male gerbils exposed to testosterone during intrauterine and postnatal life using morphological, biometrical, stereological, Kariometric, immunohistochemical, and immunofluorescence analyses. Our findings demonstrate that prenatal and pubertal exposure to testosterone increases the susceptibility to the development of prostate diseases during aging. The presence of a more proliferative gland associated with foci of adenomatous hyperplasia in animals exposed to testosterone during the prenatal and pubertal phase show that the utero life and the pubertal period are important phases for prostatic morphophysiology establishment, which is a determinant for the health of the gland during aging. Therefore, these findings reinforce the idea that prostate disease may result from hormonal disruptions in early events during prostate development, which imprint permanently on the gland predisposing it to develop lesions in later stages of life.展开更多
Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recent...Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recently, several reports have indicated that EDCs can affect the developing central nervous system. In our current study, we report that some EDCs induce apoptosis in cultured PC12 cells and can be classified into three groups. Bisphenol A (BPA), p-nonylphenol (NP) and tributyltin chloride (TBT) were found to induce endoplasmic reticulum (ER) stress-associated apoptosis and activate the unfolded protein response (UPR) system, whereas benomyl (beno) induced non-ER stress-associated apoptosis. The half-maximal apoptosis-inducing concentrations (IC50) of these EDCs were 160 μM for BPA, 25.6 μM for NP, 640 nM for TBT and 48 μM for beno. Although these concentrations are higher than those found in the environment, some EDCs may have apoptotic effects on various cells in the body, including neurons, through their accumulation in the body over time or condensation through the food chain. On the other hand, benzopyrene, fenvalerate, styrene monomer and bis(2-ethylhexyl)phthalate did not induce apoptosis in PC12 cells. We analyzed also whether apoptosis-inducing EDCs had an estrogen-like effect on cultured PC12 cells transfected with a luciferase reporter plasmid, the activity of which is dependent on estrogen receptor α. We found that BPA had an estrogen-like effect (EC50 = 5.9 μM) but that NP, TBT and beno did not in transfected PC12 cells. These results suggest that BPA may predomi-nantly exert estrogenic effects, but others may pre-dominantly have apoptosis-inducing effects on cells in the body exposed to a polluted environment.展开更多
Microplastics and endocrine disrupting chemicals are emerging pollutants in the marine environment because of their potential hazards.The effect of gastric fluid on the adsorption and desorption of 17β-estradiol(E2)a...Microplastics and endocrine disrupting chemicals are emerging pollutants in the marine environment because of their potential hazards.The effect of gastric fluid on the adsorption and desorption of 17β-estradiol(E2)and 17α-ethynylestradiol(EE2)to microplastics was investigated.The adsorption and desorption isotherms of E2/EE2 on microplastics could be well fitted by the Freundlich model while the Gibbs free energy of these processes were negative,proving that the reaction occurred spontaneously on the heterogeneous surface of the microplastics.Desorption ratios of EE2(55%–59%)on PVC were larger than that of E2(49%–55%)to indicate that EE2 was less stable in gastric fluid,which could be explained by the fact that the hydrophobicity of EE2 was greater than E2.E2/EE2 were more easily desorbed from PVC in the gastric fluid and the desorption amount(5.25–12.91/7.19–17.86μg/g)increased by 2.51 times in comparison with that in saline solution(2.22–7.81/2.87–10.80μg/g).The decrease of pH and the increase of ionic strength in gastric fluid could further strengthen desorption of E2/EE2 from PVC.The promotion of gastric juice on desorption of PVC was achieved by reducing the hydrophobicity of the PVC surface.The desorption rate of E2/EE2 at 18°C and 38°C was respectively 44%–47%/46%–50%and 49%–55%/56%–59%,indicating that PVC loaded with E2/EE2 had a relatively greater risk of releasing pollutants in the gastric fluid of constant temperature marine organisms while higher temperatures exposed higher hazards for variable temperature animals.The interaction between microplastics and pollutants might be mainly hydrophobic interaction.展开更多
Emerging contaminants(ECs)represent a small fraction of the large chemical pollution puzzle where a wide variety of potentially hazardous chemicals reach the environment,and new compounds are continuously synthesized ...Emerging contaminants(ECs)represent a small fraction of the large chemical pollution puzzle where a wide variety of potentially hazardous chemicals reach the environment,and new compounds are continuously synthesized and released in wastewater treatment plants and ultimately in effluent and biosolids.ECs have been classified into various categories;however,this article focuses on the fate of major categories,namely pharmaceutical and personal care products(PPCPs),per-and poly-fluoroalkyl substances(PFAS),flame retardants,surfactants,endocrine-disrupting chemicals(EDCs),and microplastics(MPs).These ECs when discharged to sewer and downstream wastewater treatment plants can undergo further transformations and either degrade,persist or convert into by-products which have the potential in some cases to be more hazardous.Because of potential dangerous impacts of the availability of these contaminants in the environment,information on the fate and behavior of these pollutants is highly important to develop new strategies,such as the regulation of chemicals imported into Australia and Australian consumer goods and environmental policies to mitigate them in a sustainable way.Moreover,advanced technologies are required for the detection and identification of novel contaminants emerging in the environment at ultra low levels.The application of chromatographic techniques coupled with mass spectroscopy has provided attractive breakthroughs to detect new emerging contaminants.However,it is crucially important to understand the sensitivity and robustness of these analytical techniques when dealing with complex matrices such as biosolids.In addition,most of the literature was focused on selected compounds or a family of compounds and the existing reviews have paid less attention to examine the formation of metabolites during the wastewater treatment process and their impacts on the ecosystem.This review presents an overview of the presence of different classes of ECs around the world,their quantification from different sources 展开更多
With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles o...With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles of their production, transportation, storage, consumption, and as by-products and wastes. The rising rates of cancer, obesity, and infertility suggests that there are compounds recently introduced to the environment that have altered the chemistry of the human body, and it is only with the monitoring of xenobiotics such as Bisphenol A (BPA), nonyphenols, estrogen (natural and synthetic) and other endocrine-disrupting compounds (EDCs) that patterns and links could be drawn. This paper investigates the safety, environmental and health (SHE) impacts caused by BPA, nonyphenols and estrogens. Derived from petroleum, bisphenol A is used in manufacturing plastic consumer products, including certain water bottles, in dental sealants for children's teeth, and in resins used to line tin cans. Nonyphenol is one of the by-products of alkylphenolpolyethoxilates which is widely used as nonionic surfactants. Synthetic estrogen used for birth control pills as well as natural estrogen excreted by women through urine enters the domestic wastewater streams. These compounds are considered to be EDCs and have severe SHE concerns. In this paper, the challenges of entry of these compounds (xenobiotics) into nature, health and environmental issues and their remediation have been reviewed in detail.展开更多
Endocrine disrupting chemicals (EDCs) are increasingly viewed as persistent pollutants, similar to natural hormones in function. This paper describes the expression profiles of 7 genes (DMRT, VTG, GnRHR, FSHR, CYP1...Endocrine disrupting chemicals (EDCs) are increasingly viewed as persistent pollutants, similar to natural hormones in function. This paper describes the expression profiles of 7 genes (DMRT, VTG, GnRHR, FSHR, CYP17A, CYP19A, and CYP19B) involved in sex steroid synthesis and action as well as sexual development in adult male and female Cynoglossus semilaevis, after exposure to different concentrations ofBisphenol A (BPA) and 17[3-estradiol (E2). Both BPA (1, 10, 50, 125, and 250 mg/kg) and E2 (0.5, 5, and 10 mg/kg) induced changes in target gene expression, although the estrogenic effects orE2 as a model estrogen were stronger. Among the 7 genes, VTG, CYP17A and CYP19 responded strongly to BPA or E2 exposure and can thus serve as reference biomarkers for estrogenic EDCs exposure in marine teleosts. These data will provide a window to establish a hypothalamic-pituitary-gonadal model in C. semilaevis to better understand the effect pathways of EDCs.展开更多
The power and efficiency of gasoline engines is often improved through the use of fuel with high octane ratings.The octane rating of fuel could be further increased with oxygenate additives such as alcohols and ethers...The power and efficiency of gasoline engines is often improved through the use of fuel with high octane ratings.The octane rating of fuel could be further increased with oxygenate additives such as alcohols and ethers,with methyl tert-butyl ether(MTBE)being one of the most common gasoline additives.展开更多
Guppies( Poecilia reticulata) are considered a candidate model species for the identification and testing of endocrine-disrupting chemicals. Male guppies may be used to address the challenge of making potential linkag...Guppies( Poecilia reticulata) are considered a candidate model species for the identification and testing of endocrine-disrupting chemicals. Male guppies may be used to address the challenge of making potential linkages between alterations of biomarkers, both at the cellular and organ level, and adverse outcomes. In the present study, a predictive relationship between sex characteristics and reproductive output was observed in male guppies that underwent a long-term toxicity test with 0.5 μg/L 17 β-estradiol administered during the juvenile period. Radioimmunoassay and western blot analyses demonstrated that 17 β-estradiol exposure caused a significant increase in testicular 17 β-estradiol levels as well as the induction of exposure biomarkers, namely hepatic vitellogenin. Exposure to 17 β-estradiol also caused a significant decrease in testosterone levels, which consequently reduced the gonadosomatic index, sperm counts, and the coloration index. These changes of male sexual characteristics further translated into adverse influences on reproduction, as measured by a decrease in offspring production and survival rate. Our results suggest that the above-mentioned sexual characteristics of male guppies may be considered potential in vivo biomarkers of estrogen effects on reproduction.展开更多
基金supported by the Special Environmental Research Funds for Public Welfare (No. 201209053)the National High Technology Research and Development Program (863) of China (No. 2008AA062502)
文摘The sorption of 17α-ethinyl estradiol (EE2), bisphenol A (BPA), and 4-n-nonylphenol (NP) in single systems and the sorption of EE2 with different initial aqueous concentrations of BPA or NP were examined using three soils. Results showed that all sorption isotherms were nonlinear and fit the Freundlich model. The degree of nonlinearity was in the order BPA (0.537-0.686) 〉 EE2 (0.705-0.858) 〉 NP (0.875-0.0.951) in single systems. The isotherm linearity index of EE2 sorption calculated by the Freundlich model for Loam, Silt Loam and Silt increased from 0.758, 0.705 and 0.858, to 0.889, 0.910 and 0.969, respectively, when BPA concentration increased from 0 to 1000 μg/L, but the effect of NP was comparably minimal. Additionally, EE2 significantly suppressed the sorption of BPA, but insignificantly suppressed that of NE These findings can be attributed to the difference of sorption affinity of EE2, NP and BPA on the hard carbon (e.g., black carbon) of soil organic matter that dominated the sorption in the low equilibrium aqueous concentration range of endocrine-disrupting chemicals (EDCs). Competitive sorption among EDCs presents new challenges for predicting the transport and fate of EDCs under the influence of co-solutes.
基金Project supported by the Science Faculty Strategic Research of HongKong Baptist University(No.FRG/03-04/II-51)the Environment and Conservation Fund of Hong Kong Environmental Protection Department(No.16/2003)the National Natural Science Foundation of China(No.20307012).
文摘Spatial and temporal distribution of octylphenol (OP) and nonylphenol (NP) in Mai Po Marshes, a subtropical estuarine wetland in Hong Kong, were investigated. Surface water samples were collected every month from 11 sites during the period of September- December 2004. Concentrations of OP and NP ranged from 11.3 to 348 ng/L and from 29 to 2591 ng/L, respectively. The high levels of NP and OP were found in November and December than in September and October. The levels of OP and NP have no significant spatial differences except September. Total organic matter in the sediments appeared to be an important factor in controlling the fate of these compounds in the aquatic environment.
基金Science and Technology Project of Guangdong Province,China(2022A0505050035)National Natural Science Foundation of China(82273656,82304177,82073519)+5 种基金Guangdong Basic Applied Basic Research Foundation(2022A1515010610,Guangdong-Dongguan Joint grant 2022A1515111098,Guangdong-Guangzhou Joint grant 2023A1515110373)Chinese Postdoctoral Science Foundation(2023M741553,2022M721486,2023T160295)Postdoctoral Fellowship Program of CPSF(GZC20231055)National Training Program of Innovation and Entrepreneurship for Undergraduates(202212121034,S202312121124)Guangdong Provincial Key Laboratory of Tropical Disease Research(2017B030314035)NMPA Key Laboratory for Safety Evaluation of Cosmetics,and the GDMPA Project of Scientific and Technological Innovation(2024ZDZ09).
文摘Triclosan(TCS)has garnered significant attention due to its widespread use and associated endocrine-disrupting effects.However,its impact on the neuroendocrine system and underlying mechanisms remain poorly understood.Here,we established correlations between TCS exposure and serum sex hormone levels in participants of the National Health and Nutrition Examination Survey(NHANES).Additionally,we investigated TCS’s influence on the neuroendocrine system using adult zebrafish exposed to environmentally relevant concentrations of TCS(0.361–48.2μg/L)for 21 days.Assessment of reproductive and neurotoxicity included histopathological examination and behavioral tests.Transcriptomics,proteomics analyses,and biochemical detection were employed to elucidate mechanisms underlying TCS-induced neuroendocrine disruption.Significant correlations were found between TCS exposure and estradiol,testosterone,and sex hormone-binding globulin levels in NHANES participants.In addition,TCS exposure inhibited ovary development and spermatogenesis in zebrafish.Transcriptomics and proteomics analysis revealed gender-specific key signaling and metabolism-related pathways implicated in TCS-induced reproductive toxicity.Moreover,TCS exposure induced nervous system impairment,as evidenced by histological changes and altered motor behavior,possibly associated with oxidative damage.Correlation analysis further highlighted the potential connection between endocrine system disruption and nervous system impairment following TCS exposure.Overall,this study provided evidence supporting TCS-induced endocrine disruption and offered insights into its underlying mechanisms.
基金supported by the National Natural Science Foundation of China(No.22176199)the Key R&D Program of Shandong Province(No.2020CXGC011202)+1 种基金the Jinan University and Institute Innovation Team Project(No.2021GXRC061)the Research Center for Eco-Environmental Science(No.RCEES-TDZ-2021-14).
文摘The continuous and rapid increase of chemical pollution in surface waters has become a pressing and widely recognized global concern.As emerging contaminants(ECs)in surface waters,pharmaceutical and personal care products(PPCPs),and endocrine-disrupting compounds(EDCs)have attracted considerable attention due to their wide occurrence and potential threat to human health.Therefore,a comprehensive understanding of the occurrence and risks of ECs in Chinese surface waters is urgently required.This study summarizes and assesses the environmental occurrence concentrations and ecological risks of 42 pharmaceuticals,15 personal care products(PCPs),and 20 EDCs frequently detected in Chinese surface waters.The ECs were primarily detected in China’s densely populated and highly industrialized regions.Most detected PPCPs and EDCs had concentrations between ng/L toμg/L,whereas norfloxacin,caffeine,and erythromycin had relatively high contamination levels,even exceeding 2000 ng/L.Risk evaluation based on the risk quotient method revealed that 34 PPCPs and EDCs in Chinese surface waters did not pose a significant risk,whereas 4-nonylphenol,4-tert-octylphenol,17α-ethinyl estradiol,17β-estradiol,and triclocarban did.This review provides a comprehensive summary of the occurrence and associated hazards of typical PPCPs and EDCs in Chinese surface waters over the past decade,and will aid in the regulation and control of these ECs in Chinese surface waters。
基金supported by the National Key Research and Development Program of China(2023YFC3706600)the National Natural Science Foundation of China(22225605)the K.C.Wong Education Foundation of China(GJTD-2020-03).
文摘Currently,many countries and regions worldwide face the challenge of declining population growth due to persistently low rates of female reproduction.Since 2017,China's birth rate has hit historic lows and continued to decline,with the death rate now equaling the birth rate.Concerns have emerged regarding the potential impact of environmental contaminants on reproductive health,including pregnancy loss.Endocrine-disrupting chemicals(EDCs)like phthalate esters(PAEs),bisphenol A(BPA),triclosan(TCS),and perfluoroalkyl substances(PFASs)have raised attention due to their adverse effects on biological systems.While China's 14th Five-Year Plan(2021–2025)for national economic and social development included the treatment of emerging pollutants,including EDCs,there are currently no national appraisal standards or regulatory frameworks for EDCs and their mixtures.Addressing the risk of EDC mixtures is an urgent matter that needs consideration from China's perspective in the near future.In this Perspective,we delve into the link between EDC mixture exposure and pregnancy loss in China.Our focus areas include establishing a comprehensive national plan targeting reproductive-aged women across diverse urban and rural areas,understanding common EDC combinations in women and their surrounding environment,exploring the relationship between EDCs and pregnancy loss via epidemiology,and reconsidering the safety of EDCs,particularly in mixtures and low-dose scenarios.We envision that this study could aid in creating preventive strategies and interventions to alleviate potential risks induced by EDC exposure during pregnancy in China.
文摘Background: Prolonged exposure to environmental toxicants like endocrine-disrupting chemicals has been linked to several ovarian pathologies. Exposure to endocrine-disrupting chemicals may start at any time of life from the fetal stage to adulthood resulting in various health complications The purpose of our study is to compare the concentration levels and association of benzopyrene, bisphenol A and genistein in patients with ovarian tumors and normal control group. We also sort to evaluate the predictive performance of benzopyrene, bisphenol A and genistein in patients with ovarian tumors. Methods: A case-control study was conducted for randomly selected participants involving 30 patients and 30 controls. 30 patients with radiologically diagnosed and histopathological confirmed ovarian tumors were included in the study between January 2022 and December 2022. Urine samples from each group were analyzed using liquid chromatography-mass spectrometry. Descriptive analysis for normally distributed continuous variables was done accordingly. Concentration levels of endocrine-disrupting chemicals were assessed using the Mann-Whitney test. The association of endocrine-disrupting chemicals with pathological ovarian tumors was analyzed using binary logistic regression. Evaluation of the diagnostic performance of endocrine-disrupting chemicals was analyzed using the ROC curve. Results: Overall, patients were significantly (P = 0.000) older than the healthy controls. Mean years (SD) were 36.7 (7.90) and 28.8 years (4.89) for patients and normal women respectively. Endometriomas had the highest incidence of 50%. The level of benzopyrene and bisphenol A in patients was significantly higher than those in the control group, while the level of genistein was significantly higher in normal controls. Benzopyrene and bisphenol A were significantly associated with ovarian cysts, and the incidence of pathological ovarian cysts was positively correlated to these EDCs, with OR value 64.79 (P = 0.005) for benzopyrene and 9.609 (P = 0.001)
文摘The prostate is an accessory sex gland that develops under precise androgenic control. It is known that hormonal imbalance may disrupt its development predisposing this gland to develop diseases during aging. Although the hypothesis regarding earlier origins of prostate diseases was proposed many years ago, the mechanisms underlying this complex phenomenon are poorly understood. Therefore, the aim of this study was to evaluate the prostates of old male gerbils exposed to testosterone during intrauterine and postnatal life using morphological, biometrical, stereological, Kariometric, immunohistochemical, and immunofluorescence analyses. Our findings demonstrate that prenatal and pubertal exposure to testosterone increases the susceptibility to the development of prostate diseases during aging. The presence of a more proliferative gland associated with foci of adenomatous hyperplasia in animals exposed to testosterone during the prenatal and pubertal phase show that the utero life and the pubertal period are important phases for prostatic morphophysiology establishment, which is a determinant for the health of the gland during aging. Therefore, these findings reinforce the idea that prostate disease may result from hormonal disruptions in early events during prostate development, which imprint permanently on the gland predisposing it to develop lesions in later stages of life.
文摘Endocrine-disrupting chemicals (EDCs) are known to exert estrogen-like effects that are similar to those made by naturally produced hormones or by inhibition of the receptors in the cell receiving the hormones. Recently, several reports have indicated that EDCs can affect the developing central nervous system. In our current study, we report that some EDCs induce apoptosis in cultured PC12 cells and can be classified into three groups. Bisphenol A (BPA), p-nonylphenol (NP) and tributyltin chloride (TBT) were found to induce endoplasmic reticulum (ER) stress-associated apoptosis and activate the unfolded protein response (UPR) system, whereas benomyl (beno) induced non-ER stress-associated apoptosis. The half-maximal apoptosis-inducing concentrations (IC50) of these EDCs were 160 μM for BPA, 25.6 μM for NP, 640 nM for TBT and 48 μM for beno. Although these concentrations are higher than those found in the environment, some EDCs may have apoptotic effects on various cells in the body, including neurons, through their accumulation in the body over time or condensation through the food chain. On the other hand, benzopyrene, fenvalerate, styrene monomer and bis(2-ethylhexyl)phthalate did not induce apoptosis in PC12 cells. We analyzed also whether apoptosis-inducing EDCs had an estrogen-like effect on cultured PC12 cells transfected with a luciferase reporter plasmid, the activity of which is dependent on estrogen receptor α. We found that BPA had an estrogen-like effect (EC50 = 5.9 μM) but that NP, TBT and beno did not in transfected PC12 cells. These results suggest that BPA may predomi-nantly exert estrogenic effects, but others may pre-dominantly have apoptosis-inducing effects on cells in the body exposed to a polluted environment.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.41877131 and 41671319)the Taishan Scholar Program of Shandong Province(No.tsqn201812116)+2 种基金the Science and Technology Service Network Initiative of the Chinese Academy of Sciences(No.KFJ-STS-QYZX-114)the Two-Hundred Talents Plan of Yantai(No.Y739011021)the Wanhua Chemical Group Co.Ltd.
文摘Microplastics and endocrine disrupting chemicals are emerging pollutants in the marine environment because of their potential hazards.The effect of gastric fluid on the adsorption and desorption of 17β-estradiol(E2)and 17α-ethynylestradiol(EE2)to microplastics was investigated.The adsorption and desorption isotherms of E2/EE2 on microplastics could be well fitted by the Freundlich model while the Gibbs free energy of these processes were negative,proving that the reaction occurred spontaneously on the heterogeneous surface of the microplastics.Desorption ratios of EE2(55%–59%)on PVC were larger than that of E2(49%–55%)to indicate that EE2 was less stable in gastric fluid,which could be explained by the fact that the hydrophobicity of EE2 was greater than E2.E2/EE2 were more easily desorbed from PVC in the gastric fluid and the desorption amount(5.25–12.91/7.19–17.86μg/g)increased by 2.51 times in comparison with that in saline solution(2.22–7.81/2.87–10.80μg/g).The decrease of pH and the increase of ionic strength in gastric fluid could further strengthen desorption of E2/EE2 from PVC.The promotion of gastric juice on desorption of PVC was achieved by reducing the hydrophobicity of the PVC surface.The desorption rate of E2/EE2 at 18°C and 38°C was respectively 44%–47%/46%–50%and 49%–55%/56%–59%,indicating that PVC loaded with E2/EE2 had a relatively greater risk of releasing pollutants in the gastric fluid of constant temperature marine organisms while higher temperatures exposed higher hazards for variable temperature animals.The interaction between microplastics and pollutants might be mainly hydrophobic interaction.
文摘Emerging contaminants(ECs)represent a small fraction of the large chemical pollution puzzle where a wide variety of potentially hazardous chemicals reach the environment,and new compounds are continuously synthesized and released in wastewater treatment plants and ultimately in effluent and biosolids.ECs have been classified into various categories;however,this article focuses on the fate of major categories,namely pharmaceutical and personal care products(PPCPs),per-and poly-fluoroalkyl substances(PFAS),flame retardants,surfactants,endocrine-disrupting chemicals(EDCs),and microplastics(MPs).These ECs when discharged to sewer and downstream wastewater treatment plants can undergo further transformations and either degrade,persist or convert into by-products which have the potential in some cases to be more hazardous.Because of potential dangerous impacts of the availability of these contaminants in the environment,information on the fate and behavior of these pollutants is highly important to develop new strategies,such as the regulation of chemicals imported into Australia and Australian consumer goods and environmental policies to mitigate them in a sustainable way.Moreover,advanced technologies are required for the detection and identification of novel contaminants emerging in the environment at ultra low levels.The application of chromatographic techniques coupled with mass spectroscopy has provided attractive breakthroughs to detect new emerging contaminants.However,it is crucially important to understand the sensitivity and robustness of these analytical techniques when dealing with complex matrices such as biosolids.In addition,most of the literature was focused on selected compounds or a family of compounds and the existing reviews have paid less attention to examine the formation of metabolites during the wastewater treatment process and their impacts on the ecosystem.This review presents an overview of the presence of different classes of ECs around the world,their quantification from different sources
文摘With the use of over 100,000 industrially produced chemicals, there have been several concerns on human health and environment. Most of these chemicals are exposed into the natural environment during the life cycles of their production, transportation, storage, consumption, and as by-products and wastes. The rising rates of cancer, obesity, and infertility suggests that there are compounds recently introduced to the environment that have altered the chemistry of the human body, and it is only with the monitoring of xenobiotics such as Bisphenol A (BPA), nonyphenols, estrogen (natural and synthetic) and other endocrine-disrupting compounds (EDCs) that patterns and links could be drawn. This paper investigates the safety, environmental and health (SHE) impacts caused by BPA, nonyphenols and estrogens. Derived from petroleum, bisphenol A is used in manufacturing plastic consumer products, including certain water bottles, in dental sealants for children's teeth, and in resins used to line tin cans. Nonyphenol is one of the by-products of alkylphenolpolyethoxilates which is widely used as nonionic surfactants. Synthetic estrogen used for birth control pills as well as natural estrogen excreted by women through urine enters the domestic wastewater streams. These compounds are considered to be EDCs and have severe SHE concerns. In this paper, the challenges of entry of these compounds (xenobiotics) into nature, health and environmental issues and their remediation have been reviewed in detail.
基金Supported by the special funds for the Basic R&D Program in the Central Non-profit Research Institutes(No.2060302)
文摘Endocrine disrupting chemicals (EDCs) are increasingly viewed as persistent pollutants, similar to natural hormones in function. This paper describes the expression profiles of 7 genes (DMRT, VTG, GnRHR, FSHR, CYP17A, CYP19A, and CYP19B) involved in sex steroid synthesis and action as well as sexual development in adult male and female Cynoglossus semilaevis, after exposure to different concentrations ofBisphenol A (BPA) and 17[3-estradiol (E2). Both BPA (1, 10, 50, 125, and 250 mg/kg) and E2 (0.5, 5, and 10 mg/kg) induced changes in target gene expression, although the estrogenic effects orE2 as a model estrogen were stronger. Among the 7 genes, VTG, CYP17A and CYP19 responded strongly to BPA or E2 exposure and can thus serve as reference biomarkers for estrogenic EDCs exposure in marine teleosts. These data will provide a window to establish a hypothalamic-pituitary-gonadal model in C. semilaevis to better understand the effect pathways of EDCs.
文摘The power and efficiency of gasoline engines is often improved through the use of fuel with high octane ratings.The octane rating of fuel could be further increased with oxygenate additives such as alcohols and ethers,with methyl tert-butyl ether(MTBE)being one of the most common gasoline additives.
基金Supported by the National Natural Science Foundation of China(No.31202001)the Natural Science Foundation of Shandong Province,China(No.ZR2012CQ010)
文摘Guppies( Poecilia reticulata) are considered a candidate model species for the identification and testing of endocrine-disrupting chemicals. Male guppies may be used to address the challenge of making potential linkages between alterations of biomarkers, both at the cellular and organ level, and adverse outcomes. In the present study, a predictive relationship between sex characteristics and reproductive output was observed in male guppies that underwent a long-term toxicity test with 0.5 μg/L 17 β-estradiol administered during the juvenile period. Radioimmunoassay and western blot analyses demonstrated that 17 β-estradiol exposure caused a significant increase in testicular 17 β-estradiol levels as well as the induction of exposure biomarkers, namely hepatic vitellogenin. Exposure to 17 β-estradiol also caused a significant decrease in testosterone levels, which consequently reduced the gonadosomatic index, sperm counts, and the coloration index. These changes of male sexual characteristics further translated into adverse influences on reproduction, as measured by a decrease in offspring production and survival rate. Our results suggest that the above-mentioned sexual characteristics of male guppies may be considered potential in vivo biomarkers of estrogen effects on reproduction.