“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information an...“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.展开更多
Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
In end-to-end QoS provisioning some bandwidth portions on the link may be reserved for certain traffic classes (and for particular set of users) so the congestion problem of concurrent flows (traversing the network si...In end-to-end QoS provisioning some bandwidth portions on the link may be reserved for certain traffic classes (and for particular set of users) so the congestion problem of concurrent flows (traversing the network simultaneously) can appear. It means that in overloaded and poorly connected MPLS/DS networks the CR (Constraint-based Routing) becomes insufficient technique. If traffic engineering is supported with ap-propriate traffic load control the congestion possibility can be predicted before the utilization of guaranteed service. In that sense the initial (proactive) routing can be pre-computed much earlier, possible during SLA (Service Level Agreement) negotiation. In the paper a load simulation technique for load balancing control purpose is proposed. It could be a very good solution for congestion avoidance and for better load-balancing purpose where links are running close to capacity. To be acceptable for real application such complicated load control technique needs very effective algorithm. Proposed algorithm was tested on the network with maximum M core routers on the path and detail results are given for N=3 service classes. Further improve-ment through heuristic approach is made and results are discussed. Some heuristic options show significant complexity savings that is appropriate for load control in huge networks.展开更多
文摘“Minimizing path delay” is one of the challenges in low Earth orbit (LEO) satellite network routing algo-rithms. Many authors focus on propagation delays with the distance vector but ignore the status information and processing delays of inter-satellite links. For this purpose, a new discrete-time traffic and topology adap-tive routing (DT-TTAR) algorithm is proposed in this paper. This routing algorithm incorporates both inher-ent dynamics of network topology and variations of traffic load in inter-satellite links. The next hop decision is made by the adaptive link cost metric, depending on arrival rates, time slots and locations of source-destination pairs. Through comprehensive analysis, we derive computation formulas of the main per-formance indexes. Meanwhile, the performances are evaluated through a set of simulations, and compared with other static and adaptive routing mechanisms as a reference. The results show that the proposed DT-TTAR algorithm has better performance of end-to-end delay than other algorithms, especially in high traffic areas.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
基金The National Natural Science Foundation of China(No.61071124)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20100042120035)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-110075)the Fundamental Research Funds for the Central Universities(Nos.N120804004,N130504003)
文摘In end-to-end QoS provisioning some bandwidth portions on the link may be reserved for certain traffic classes (and for particular set of users) so the congestion problem of concurrent flows (traversing the network simultaneously) can appear. It means that in overloaded and poorly connected MPLS/DS networks the CR (Constraint-based Routing) becomes insufficient technique. If traffic engineering is supported with ap-propriate traffic load control the congestion possibility can be predicted before the utilization of guaranteed service. In that sense the initial (proactive) routing can be pre-computed much earlier, possible during SLA (Service Level Agreement) negotiation. In the paper a load simulation technique for load balancing control purpose is proposed. It could be a very good solution for congestion avoidance and for better load-balancing purpose where links are running close to capacity. To be acceptable for real application such complicated load control technique needs very effective algorithm. Proposed algorithm was tested on the network with maximum M core routers on the path and detail results are given for N=3 service classes. Further improve-ment through heuristic approach is made and results are discussed. Some heuristic options show significant complexity savings that is appropriate for load control in huge networks.