The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanic...The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.展开更多
In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturb...In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.展开更多
By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp...By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp condition is obtained for the existence of the boundary value problems of the above equation. For a linear case, by the discrete variational theory, a necessary and sufficient condition for the existence, uniqueness and multiplicity of the solutions is also established.展开更多
文摘The Emden differential equation is one of the most widely studied and challenging nonlinear dynamics equations in literature. It finds applications in various areas of study such as celestial mechanics, fluid mechanics, Steller structure, isothermal gas spheres, thermionic currents and so on. Because of the importance of the equation, the method of generalized Sundman transformation (GST) as proposed by Nakpim and Meleshko is used for linearizing the Emden differential equation. The Emden differential equation considered here is a modification of the equation given by Berkovic. The results obtained in this paper imply that the Emden equation cannot be linearized by a point transformation. The general solution of the modified Emden equation is also obtained.
文摘In this paper the Modified Equations of Emden type (MEE), χ+αχχ+βχ 3 is solved numerically by the differential transform method. This technique doesn’t require any discretization, linearization or small perturbations and therefore it reduces significantly the numerical computation. The current results of this paper are in excellent agreement with those provided by Chandrasekar et al. [1] and thereby illustrate the reliability and the performance of the differential transform method. We have also compared the results with the classical Runge-Kutta 4 (RK4) Method.
基金This work was supported by the Foundation of First Period of Key Basic Research sponsored by the Department of Science and Technology of China(Grant No.2003CCA02400)National Natural Science Foundation of China(Grant No.10471029)by Natural Science Foundation of Guangdong Province(Grant No.04300034).
文摘By using the critical point theory, some sufficient conditions for the existence of the solutions to the boundary value problems of a discrete generalized Emden-Fowler equation are obtained. In a special case, a sharp condition is obtained for the existence of the boundary value problems of the above equation. For a linear case, by the discrete variational theory, a necessary and sufficient condition for the existence, uniqueness and multiplicity of the solutions is also established.