期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
DEGREE OF APPROXIMATION ASSOCIATED WITH SOME ELLIPTIC OPERATORS AND ITS APPLICATIONS 被引量:8
1
作者 Xinlong Zhou(University of Duisburg, Germany) 《Analysis in Theory and Applications》 1995年第2期9-29,共21页
The Jackson-type estimates by using some elliptic operators will be achieved. These results will be used to characterize the regularity of some elliptic operators by means of the approximation degree and the saturati... The Jackson-type estimates by using some elliptic operators will be achieved. These results will be used to characterize the regularity of some elliptic operators by means of the approximation degree and the saturation class of the multivariate Bernstein operators as well. 展开更多
关键词 DEGREE OF APPROXIMATION ASSOCIATED WITH SOME elliptic operators AND ITS APPLICATIONS II ITS
下载PDF
Multiplicity of solutions for the semilinear subelliptic Dirichlet problem
2
作者 Hua Chen Hong-Ge Chen +1 位作者 Jin-Ning Li Xin Liao 《Science China Mathematics》 SCIE CSCD 2024年第3期475-504,共30页
In this paper,we study the semilinear subelliptic equation{−△Xu=f(x,u)+g(x,u)inΩ,u=0 on∂Ω,where△X=−∑m i=1 Xi∗Xi is the self-adjoint Hormander operator associated with the vector fields X=(X_(1),X_(2),...,X_(m))sati... In this paper,we study the semilinear subelliptic equation{−△Xu=f(x,u)+g(x,u)inΩ,u=0 on∂Ω,where△X=−∑m i=1 Xi∗Xi is the self-adjoint Hormander operator associated with the vector fields X=(X_(1),X_(2),...,X_(m))satisfying the Hormander's condition,f(x,u)∈C(Ω×R),g(x,u)is a Carathéodory function onΩ×R,andΩis an open bounded domain in R~n with smooth boundary.Combining the perturbation from the symmetry method with the approaches involving the eigenvalue estimate and the Morse index in estimating the minimax values,we obtain two kinds of existence results for multiple weak solutions to the problem above.Furthermore,we discuss the difference between the eigenvalue estimate approach and the Morse index approach in degenerate situations.Compared with the classical elliptic cases,both approaches here have their own strengths in the degenerate cases.This new phenomenon implies that the results in general degenerate cases would be quite different from the situations in classical elliptic cases. 展开更多
关键词 degenerate elliptic equations Hormander operators perturbation method Morse index
原文传递
GLOBAL BOUND ON THE GRADIENT OF SOLUTIONS TO p-LAPLACE TYPE EQUATIONS WITH MIXED DATA
3
作者 Minh-Phuong TRAN The-Quang TRAN Thanh-Nhan NGUYEN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1394-1414,共21页
In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogene... In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest. 展开更多
关键词 gradient estimates p-Laplace quasilinear elliptic equation fractional maximal operators Lorentz-Morrey spaces
下载PDF
Some Applications of Besov Spaces on Fractals 被引量:1
4
作者 Da Chun YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1209-1218,共10页
Let F be a compact d-set in R^n with 0 〈 d ≤ n, which includes various kinds of fractals. The author establishes an embedding theorem for the Besov spaces Bpq^s(F) of Triebel and the Sobolev spaces W^1,P(F,d,μ)... Let F be a compact d-set in R^n with 0 〈 d ≤ n, which includes various kinds of fractals. The author establishes an embedding theorem for the Besov spaces Bpq^s(F) of Triebel and the Sobolev spaces W^1,P(F,d,μ) of Hajtasz when s 〉 1, 1 〈 p 〈∞ and 0 〈 q ≤ ∞. The author also gives some applications of the estimates of the entropy numbers in the estimates of the eigenvalues of some fractal pseudodifferential operators in the spaces Bpq^0(F) and Fpq^0(F). 展开更多
关键词 Besov spaces Fractals Sobolev spaces Pseudodifferential operators elliptic operators Eigenvalues
原文传递
The Eigenvalues of a Class of Elliptic Differential Operators
5
作者 HABIBI VOSTA KOLAEI Mohammad Javad AZAMI Shahroud 《Journal of Partial Differential Equations》 CSCD 2023年第1期58-67,共10页
Consider(M,g)as an n-dimensional compact Riemannian manifold.In this paper we are going to study a class of elliptic differential operators which appears naturally in the study of hypersurfaces with constant mean curv... Consider(M,g)as an n-dimensional compact Riemannian manifold.In this paper we are going to study a class of elliptic differential operators which appears naturally in the study of hypersurfaces with constant mean curvature and also the study of variation theory for 1-area functional. 展开更多
关键词 Eigenvalue problem elliptic operators Bochner type formula
原文传递
The Commutator of the Kato Square Root for Second Order Elliptic Operators on R^n 被引量:2
6
作者 Yan Ping CHEN Yong DING Steve HOFMANN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第10期1121-1144,共24页
Let L = -div(AV) be a second order divergence form elliptic operator, and A be an accretive, n × n matrix with bounded measurable complex coefficients in R^n. We obtain the Lp bounds for the commutator generate... Let L = -div(AV) be a second order divergence form elliptic operator, and A be an accretive, n × n matrix with bounded measurable complex coefficients in R^n. We obtain the Lp bounds for the commutator generated by the Kato square root v/L and a Lipschitz function, which recovers a previous result of Calderon, by a different method. In this work, we develop a new theory for the commutators associated to elliptic operators with Lipschitz function. The theory of the commutator with Lipschitz function is distinguished from the analogous elliptic operator theory. 展开更多
关键词 COMMUTATOR Kato square root Lipschitz function elliptic operators
原文传递
Fredholm Index and Spectral Flow in Non-self-adjoint Case
7
作者 Guoyuan CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第5期975-992,共18页
A version of the "Fredholm index = spectral flow" theorem is proved for general families of elliptic operators (A(t)}t∈R on closed (compact and without boundary) manifolds. Here we do not require that A(t),... A version of the "Fredholm index = spectral flow" theorem is proved for general families of elliptic operators (A(t)}t∈R on closed (compact and without boundary) manifolds. Here we do not require that A(t), t ∈R or its leading part is self-adjoint. 展开更多
关键词 Fredholm index spectral flow non-self-adjoint operators elliptic operators
原文传递
GRADIENT ESTIMATES FOR THE COMMUTATOR WITH FRACTIONAL DIFFERENTIATION FOR SECOND ORDER ELLIPTIC OPERATORS 被引量:1
8
作者 Wenyu TAO bnping CHEN Jili LI 《Acta Mathematica Scientia》 SCIE CSCD 2019年第5期1255-1264,共10页
Let L=-div(A▽) be a second order divergence form elliptic operator, where A is an accretive, n×n matrix with bounded measurable complex coefficients on R^n. Let L^α/2 (0 <α< 1) denotes the fractional dif... Let L=-div(A▽) be a second order divergence form elliptic operator, where A is an accretive, n×n matrix with bounded measurable complex coefficients on R^n. Let L^α/2 (0 <α< 1) denotes the fractional differential operator associated with L and (-△)^α/2b ∈ L^n/α(R^n). In this article, we prove that the commutator[b, L^α/2] is bounded from the homogenous Sobolev space Lα%2 (R^n) to L^2(R^n). 展开更多
关键词 COMMUTATOR FRACTIONAL differentiation elliptic operators SOBOLEV space
下载PDF
L^p-gradient estimates for the commutators of the Kato square roots of second-order elliptic operators on R^n
9
作者 Wenyu Tao Yanping Chen +1 位作者 Yayuan Xiao Liwei Wang 《Science China Mathematics》 SCIE CSCD 2020年第3期575-594,共20页
Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato ... Let L=-div(A▽) be a second-order divergent-form elliptic operator,where A is an accretive n×n matrix with bounded and measurable complex coefficients on Herein,we prove that the commutator [b,L1/2]of the Kato square root L1/2 and b with ▽b∈Ln(Rn)(n> 2),is bounded from the homogenous Sobolev space L1p(Rn) to Lp(Rn)(p-(L) <p<p+(L)). 展开更多
关键词 COMMUTATOR Kato square root elliptic operators Sobolev space
原文传递
LOW-RANK TENSOR STRUCTURE OF SOLUTIONS TO ELLIPTIC PROBLEMS WITH JUMPING COEFFICIENTS
10
作者 Sergey Dolgov Boris N.Khoromskij +1 位作者 Ivan Oseledets Eugene E.Tyrtyshnikov 《Journal of Computational Mathematics》 SCIE CSCD 2012年第1期14-23,共10页
We study the separability properties of solutions to elliptic equations with piecewise constant coefficients in Rd, d ≥ 2. The separation rank of the solution to diffusion equation with variable coefficients is prese... We study the separability properties of solutions to elliptic equations with piecewise constant coefficients in Rd, d ≥ 2. The separation rank of the solution to diffusion equation with variable coefficients is presented. 展开更多
关键词 Structured matrices elliptic operators Poisson equation Matrix approxima-tions Lowrank matrices TENSORS Canonical decomposition.
原文传递
Anisotropic estimates for sub-elliptic operators
11
作者 John BLAND Tom DUCHAMP 《Science China Mathematics》 SCIE 2008年第4期509-522,共14页
In the 1970’s, Folland and Stein studied a family of subelliptic scalar operators $ \mathcal{L}_\lambda $ which arise naturally in the $ \bar \partial _b $ -complex. They introduced weighted Sobolev spaces as the nat... In the 1970’s, Folland and Stein studied a family of subelliptic scalar operators $ \mathcal{L}_\lambda $ which arise naturally in the $ \bar \partial _b $ -complex. They introduced weighted Sobolev spaces as the natural spaces for this complex, and then obtained sharp estimates for $ \bar \partial _b $ in these spaces using integral kernels and approximate inverses. In the 1990’s, Rumin introduced a differential complex for compact contact manifolds, showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator, and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper, we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping. 展开更多
关键词 sub-elliptic operators anisotropic estimates anisotropic Sobolev spaces Rumin complex contact manifolds 35H20 35B45 53D10 32V20
原文传递
WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF THE KATO SQUARE ROOT OF SECOND ORDER ELLIPTIC OPERATORS ON R^(n)
12
作者 Yanping CHEN Yong DING Kai ZHU 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1310-1332,共23页
Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,... Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,where the range of p is different from(1,∞),and we isolate the right class of weights introduced by Auscher and Martell.In this work,we use good-λ inequality with two parameters through the weighted boundedness of Riesz transforms ▽L^(-1/2).Our result recovers,in some sense,a previous result of Hofmann. 展开更多
关键词 Muckenhoupt weights COMMUTATOR Kato square root Lipschitz function elliptic operators
下载PDF
采用双偏振编码的局域细胞逻辑的光电实现
13
作者 张家军 张莉 +2 位作者 贺安之 阎大鹏 刘淑萍 《南京理工大学学报》 EI CAS CSCD 1993年第5期88-92,共5页
该文给出了实现局域细胞逻辑的光电混合系统,采用双偏振编码、电子相减及电子阈值技术来完成正负互联操作,并对用于边缘增强的拉普拉斯算子进行了实验验证,所得的结果与计算机模拟值相吻合。
关键词 椭圆算子 细胞逻辑 图象处理器
下载PDF
Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations
14
作者 Hua CHEN Peng LUO Shuying TIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第5期685-718,共34页
In this paper,the authors study the asymptotically linear elliptic equation on manifold with conical singularities-ΔBu+λu=a(z)f(u),u≥0 in R+N,where N=n+1≥3,λ>0,z=(t,x_(1),…,x_(n)),and ΔB=(t■t)^(2)+■^(2)x_(... In this paper,the authors study the asymptotically linear elliptic equation on manifold with conical singularities-ΔBu+λu=a(z)f(u),u≥0 in R+N,where N=n+1≥3,λ>0,z=(t,x_(1),…,x_(n)),and ΔB=(t■t)^(2)+■^(2)x_(1)+…+■^(2)x_(n).Combining properties of cone-degenerate operator,the Pohozaev manifold and qualitative properties of the ground state solution for the limit equation,we obtain a positive solution under some suitable conditions on a and f. 展开更多
关键词 Asymptotically linear Pohozaev identity Cone degenerate elliptic operators
原文传递
Dirichlet Eigenvalue Problem of Degenerate Elliptic Operators with Non-Smooth Coefficients
15
作者 Hua Chen Hong-Ge Chen Jin-Ning Li 《Communications in Mathematical Research》 CSCD 2022年第4期498-515,共18页
The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upp... The aim of this review is to introduce some recent results in eigenvalues problems for a class of degenerate elliptic operators with non-smooth coefficients,we present the explicit estimates of the lower bound and upper bound for its Dirichlet eigenvalues. 展开更多
关键词 Dirichlet eigenvalues weighted Sobolev spaces degenerate elliptic operators homogeneous dimension
原文传递
一族椭圆算子谱间隔的扰动构造法(英文)
16
作者 陈国元 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期74-79,共6页
利用扰动的方法,对一族正阶的椭圆经典拟微分算子构造了一个谱间隔.
关键词 椭圆算子 扰动 光滑算子 非自伴
下载PDF
无穷柱面上一类椭圆算子的Fredholm性质(英文)
17
作者 陈国元 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期69-75,共7页
证明了在无穷柱面M×R上形如DA=d/dt-A(t)的微分算子的Fredholm性质.其中M是一个闭(紧且无边)流形;{A(t)}t∈R是向量丛E→M上的一族一阶椭圆微分算子;limt→±∞A(t)=A±存在且A±是双曲的.已有的文献一般要求{A(t)},t... 证明了在无穷柱面M×R上形如DA=d/dt-A(t)的微分算子的Fredholm性质.其中M是一个闭(紧且无边)流形;{A(t)}t∈R是向量丛E→M上的一族一阶椭圆微分算子;limt→±∞A(t)=A±存在且A±是双曲的.已有的文献一般要求{A(t)},t∈R(或者其主要部分)是自伴的,而现在不需要此条件. 展开更多
关键词 Fredholm指标 椭圆算子 非自伴算子
下载PDF
一类带权四阶椭圆算子任意特征值的估计
18
作者 贾高 刘芳 杨孝平 《南京理工大学学报》 EI CAS CSCD 北大核心 2002年第2期209-212,共4页
该文研究一类带有权函数的四阶一致椭圆算子的特征值问题 ,得到了任意特征值上界的一个估计式 ,其结果对偏微分方程理论研究和在物理及力学中的应用有着重要意义。
关键词 四阶椭圆算子 特征值 特征函数 估计 权函数 偏微分方程
下载PDF
ON SKEW DERIVATIVE PROBLEM FOR SECOND ORDER ELLIPTIC SYSTEMS ON THE PLANE
19
作者 李明忠 《Chinese Science Bulletin》 SCIE EI CAS 1983年第6期719-723,共5页
In References [1] and [2], B. V. Boyarski and I have studied separately the Dirichlet problem and the Neumann problem for the following system of second order linear elliptic
关键词 DIRICHLET elliptic NEUMANN separately DERIVATIVE operators SOLVABLE SOLVABILITY 一诚 乡心
原文传递
广义Riesz变换高阶交换子的CBMO估计
20
作者 钟海萍 周伟松 +1 位作者 张京友 王兴武 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期510-515,共6页
主要研究高阶交换子R_L^(b,m)的CBMO估计,利用对函数进行环形分解和对算子转化为相应的截断算子的方法,得到R_L^(b,m)从MK_(p,q1)^(α1,λ)(R^n)空间到MK_(p,q2)^(α2,λ)(R^n)空间的有界性.其次,利用椭圆算子相伴的热核具有L^2off-diag... 主要研究高阶交换子R_L^(b,m)的CBMO估计,利用对函数进行环形分解和对算子转化为相应的截断算子的方法,得到R_L^(b,m)从MK_(p,q1)^(α1,λ)(R^n)空间到MK_(p,q2)^(α2,λ)(R^n)空间的有界性.其次,利用椭圆算子相伴的热核具有L^2off-diagonal估计,得到广义Riesz变换R_L从MK_(p,q1)^(α1,λ)(R^n)空间到MK_(p,q2)^(α2,λ)(R^n)空间的有界性.将Riesz变换相关结论做了进一步推广. 展开更多
关键词 圆算子 广义Riesz变换 MORREY-HERZ空间 CBMO空间 L2off-diagonal估计
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部