期刊文献+

WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF THE KATO SQUARE ROOT OF SECOND ORDER ELLIPTIC OPERATORS ON R^(n)

下载PDF
导出
摘要 Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,where the range of p is different from(1,∞),and we isolate the right class of weights introduced by Auscher and Martell.In this work,we use good-λ inequality with two parameters through the weighted boundedness of Riesz transforms ▽L^(-1/2).Our result recovers,in some sense,a previous result of Hofmann.
作者 Yanping CHEN Yong DING Kai ZHU 陈艳萍;丁勇;朱凯(Department of Applied Mathematics,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences,Beijing Normal University,Ministry of Education of China,Beijing 100875,China;School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1310-1332,共23页 数学物理学报(B辑英文版)
基金 supported by NSFC(11871096 11471033) supported by NSFC(11371057 11471033 11571160) SRFDP(20130003110003) the Fundamental Research Funds for the Central Universities(2014KJJCA10)。
  • 相关文献

参考文献1

二级参考文献38

  • 1Alvarez, J., Bagby, R., Kurtz, D., et al.: Weighted estimates for commutators of linear operators. Studia Math., 104, 195-209 (1993). 被引量:1
  • 2Albrecht, D., Duong, X., McIntosh, A.: Operator Theory and Harmonic Analysis, Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), 77-136, Proc. Centre Math. Appl. Austral. Nat. Univ., 34, Austral. Nat. Univ., Canberra, 1996. 被引量:1
  • 3Alfonseca, M., Auscher, P., Axelsson, A., et al.: Analyticity of layer potentials and L2 solvability of boundary value problems for divergence form eilliptic equations with complex L1 coefficients. Adv. Math., 226,4533-4606 (2011). 被引量:1
  • 4Aronson, D.: Bounds for the fundamental solutions of a parabolic equation. Bull. Amer. Math. Soc., 73, 890-896 (1967). 被引量:1
  • 5Auscher, P.: On LP estimates for square roots of second order elliptic operators on JRn. Put. Mat., 48, 159-166 (2004). 被引量:1
  • 6Auscher, P.: On necessary and sufficient conditions for LP-estimates of Riesz transforms associated to elliptic operators on]Rn and related estimates. Mem. Amer. Math. Soc., 186(871), (2007). 被引量:1
  • 7Auscher, P., Coulhon, T., Tchamitchian, P.: Absence de principe du maximum pour certaines quations paraboliques complexes. Colloq. Math., 71, 87-95 (1996). 被引量:1
  • 8Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators. J. Funct. Anal., 241, 703-746 (2006). 被引量:1
  • 9Auscher, P., Martell, J. M.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights. Adv. Math., 212, 225-276 (2007). 被引量:1
  • 10Auscher, P., McIntosh, A., Tchamitchian, P.: Heat kernels of second order complex elliptic operators and applications. J. Funct. Anal., 152, 22-73 (1998). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部