Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper f...Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.展开更多
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis tim...In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.展开更多
文摘用电化学方法制备Ag3PO4/Ni薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)和紫外-可见漫反射光谱(UV-Vis DRS)对薄膜的表面形貌、晶相结构、光谱特性及能带结构进行了表征,以罗丹明B为模拟污染物对薄膜的光催化活性和稳定性进行了测定,采用向溶液中加入活性物种捕获剂的方法对薄膜光催化降解机理进行了探索。结果表明:最佳工艺下制备的Ag3PO4/Ni薄膜具有致密的层状表面结构,是由多晶纳米颗粒构成的薄膜。薄膜具有较高的光催化活性和突出的光催化稳定性,可见光下催化作用60 min,薄膜光催化罗丹明B的降解率是多孔P25 Ti O2/ITO纳米薄膜(自制)的2.3倍;在保持薄膜光催化活性基本不变的前提下可循环使用6次。给出了可见光下薄膜光催化降解罗丹明B的反应机理。
文摘Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.
文摘In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.