期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于小波变换和AdaBoost极限学习机的癫痫脑电信号分类 被引量:11
1
作者 韩敏 孙卓然 《计算机应用》 CSCD 北大核心 2015年第9期2701-2705,2709,共6页
针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的Ada Boost极限学习机分类算法。该算法将Ada Boost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评... 针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的Ada Boost极限学习机分类算法。该算法将Ada Boost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评价指标,实现对输入变量以及网络模型的优化。利用小波变换(WT)提取脑电信号特征,并结合提出的分类算法对UCI脑电数据集以及波恩大学癫痫脑电数据进行分类。实验结果表明,所提方法相比传统方法以及其他同类型研究,在分类精度和稳定性上有着明显提高,并具有较好的泛化性能。 展开更多
关键词 ADABOOST 极限学习机 小波变换 互信息 脑电信号分类
下载PDF
基于脑电与眨眼频率的可穿戴疲劳驾驶检测系统 被引量:10
2
作者 张丞 何坚 +1 位作者 张岩 周明我 《计算机工程》 CAS CSCD 北大核心 2017年第2期293-298,303,共7页
在小型化、低功耗的可穿戴设备上,针对运行基于脑电信号的驾驶疲劳检测系统的准确率不高的问题,在对被试者左前额脑电信号Attention和Meditation以及Blink的数据进行关系分析的基础上,分别筛选最佳窗口宽度和分类算法,设计适用于可穿戴... 在小型化、低功耗的可穿戴设备上,针对运行基于脑电信号的驾驶疲劳检测系统的准确率不高的问题,在对被试者左前额脑电信号Attention和Meditation以及Blink的数据进行关系分析的基础上,分别筛选最佳窗口宽度和分类算法,设计适用于可穿戴设备的疲劳驾驶检测算法,并在安卓智能设备上进行系统实现。采用准确率、正样本识别正确率、负样本识别正确率、敏感性与特异性指标,分别测试4种分类算法,即k临近算法、决策树算法、朴素贝叶斯算法、多层人工神经网络算法的性能,并最终选择k NN分类算法进行系统实现。实验结果证明,该系统的准确率达到83.7%,敏感性与特异性分别达到73.8%和88.6%,系统具有无线、实时、准确高效的特点。 展开更多
关键词 可穿戴 疲劳驾驶检测 脑电信号 眨眼频率 分类算法 相关系数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部