针对污水处理过程具有非线性的特点,建立基于PSO-ESN神经网络的污水处理软测量模型,来对于污水处理关键水质参数BOD(Biochemical Oxygen Demand)进行预测。由于回声状态网络(Echo State Network,ESN)学习算法无法有效解决高维矩阵训练...针对污水处理过程具有非线性的特点,建立基于PSO-ESN神经网络的污水处理软测量模型,来对于污水处理关键水质参数BOD(Biochemical Oxygen Demand)进行预测。由于回声状态网络(Echo State Network,ESN)学习算法无法有效解决高维矩阵训练不可逆,采用基于粒子群优化算法对于回声状态神经网络输出权重进行训练,进而有效解决回声状态网络病态解的问题。仿真结果证明,所设计的基于关键水质参数生化需氧量(BOD)软测量模型,其应用在污水处理关键水质参数预测的有效性,且该软测量模型具有较高测量精度。展开更多
针对以往递归神经网络(RNN)训练算法难,连续搅拌反应釜(CSTR)的强非线性等问题,将回声状态网络(echo state network,ESN)方法应用于模型不确定的CSTR系统辨识中.ESN具有较强的非线性逼近能力和良好的短期记忆能力,且只需要训练网络输出...针对以往递归神经网络(RNN)训练算法难,连续搅拌反应釜(CSTR)的强非线性等问题,将回声状态网络(echo state network,ESN)方法应用于模型不确定的CSTR系统辨识中.ESN具有较强的非线性逼近能力和良好的短期记忆能力,且只需要训练网络输出权值,简化了网络训练算法.仿真结果表明,在相同条件下,与带动量的BP(back propagation)神经网络、BP-MLP(back propagation multilayer perceptron)神经网络、最小二乘支持向量机(LS-SVM)、模糊神经网络(FNN)、GAP-RBF神经网络、MGAP-RBF神经网络相比,ESN能给出相当好的性能,表现出较高的辨识精度,ESN比带动量的BP、BP-MLP、LS-SVM神经网络的逼近精度提高了4个数量级,表明了该方法的有效性.展开更多
文摘针对污水处理过程具有非线性的特点,建立基于PSO-ESN神经网络的污水处理软测量模型,来对于污水处理关键水质参数BOD(Biochemical Oxygen Demand)进行预测。由于回声状态网络(Echo State Network,ESN)学习算法无法有效解决高维矩阵训练不可逆,采用基于粒子群优化算法对于回声状态神经网络输出权重进行训练,进而有效解决回声状态网络病态解的问题。仿真结果证明,所设计的基于关键水质参数生化需氧量(BOD)软测量模型,其应用在污水处理关键水质参数预测的有效性,且该软测量模型具有较高测量精度。