为了探究纳米颗粒添食育蚕改性蚕丝纤维的染色性能,选用2%质量分数的纳米二氧化钛和纳米氧化铜添喂家蚕,将蚕茧脱胶后进行染色并测定上染率、色深值等指标,同时探究了酸性橙Ⅱ对蚕丝纤维的染色动力学和热力学机制。结果表明:纳米颗粒添...为了探究纳米颗粒添食育蚕改性蚕丝纤维的染色性能,选用2%质量分数的纳米二氧化钛和纳米氧化铜添喂家蚕,将蚕茧脱胶后进行染色并测定上染率、色深值等指标,同时探究了酸性橙Ⅱ对蚕丝纤维的染色动力学和热力学机制。结果表明:纳米颗粒添食能改善蚕丝纤维的染色性能;酸性染料和活性染料对改性蚕丝纤维的上染率和表观色深(K S值)均高于空白组,洗涤20次后K S值仍高于空白组1.5和2.0。染色动力学和热力学分析表明酸性橙Ⅱ对各组蚕丝纤维上染过程均符合准二级吸附动力学方程和朗格缪尔(Langmuir)吸附,且属于放热过程,较低温度下更适合染色;60℃下纳米TiO 2和纳米CuO改性蚕丝纤维的实际吸附平衡饱和量分别比空白组高了0.14 g kg和1.04 g kg,计算得到染料吸附的最大值分别比空白组高了5.31 g kg和14.58 g kg,显示了改性蚕丝纤维更优的染色性能。展开更多
Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut...Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut shell, and the structure of the isolated luteolin was characterized with FTIR techniques. The interaction between dyestuff and fiber was preliminarily discussed through thermodynamic study and supramolecular structure simulation to explain the intrinsic reasons why the color fastness was low when luteolin was applied to dyeing wool fabric. The extraction condition and purification parameter were as follows: 65% ethanol, ratio of material to liquid 1:20, 80°C, 3 h, chloroform-methanol-water (4/3/2, V/V), 800 rmp/min, 2.0 Mkpa, 0.5 mL/ min and 280 nm. The results of dyeing thermodynamics showed that the sorption isotherm of luteolin on wool fabric was consistent with Nernst model and similar to the disperse dyestuff. With molecular simulation, luteolin and glycin composed 8 stable complexes whose Laplacian values all were greater than 0, which suggested typical hydrogen bonds existing. The complex with three hydrogen bonds was proved the most stable. Both studies on thermodynamics and supramolecular simulation revealed that luteolin on wool fabric mainly depended on the weak hydrogen bonds interaction that determined the low dyefastness.展开更多
文摘为了探究纳米颗粒添食育蚕改性蚕丝纤维的染色性能,选用2%质量分数的纳米二氧化钛和纳米氧化铜添喂家蚕,将蚕茧脱胶后进行染色并测定上染率、色深值等指标,同时探究了酸性橙Ⅱ对蚕丝纤维的染色动力学和热力学机制。结果表明:纳米颗粒添食能改善蚕丝纤维的染色性能;酸性染料和活性染料对改性蚕丝纤维的上染率和表观色深(K S值)均高于空白组,洗涤20次后K S值仍高于空白组1.5和2.0。染色动力学和热力学分析表明酸性橙Ⅱ对各组蚕丝纤维上染过程均符合准二级吸附动力学方程和朗格缪尔(Langmuir)吸附,且属于放热过程,较低温度下更适合染色;60℃下纳米TiO 2和纳米CuO改性蚕丝纤维的实际吸附平衡饱和量分别比空白组高了0.14 g kg和1.04 g kg,计算得到染料吸附的最大值分别比空白组高了5.31 g kg和14.58 g kg,显示了改性蚕丝纤维更优的染色性能。
文摘Natural dyestuff of luteolin was isolated and used to dye wool fabric in this paper. Ethanol extraction and high-speed countercurrent chromatography (HSCCC) were used to extract and purify the luteolin from the peanut shell, and the structure of the isolated luteolin was characterized with FTIR techniques. The interaction between dyestuff and fiber was preliminarily discussed through thermodynamic study and supramolecular structure simulation to explain the intrinsic reasons why the color fastness was low when luteolin was applied to dyeing wool fabric. The extraction condition and purification parameter were as follows: 65% ethanol, ratio of material to liquid 1:20, 80°C, 3 h, chloroform-methanol-water (4/3/2, V/V), 800 rmp/min, 2.0 Mkpa, 0.5 mL/ min and 280 nm. The results of dyeing thermodynamics showed that the sorption isotherm of luteolin on wool fabric was consistent with Nernst model and similar to the disperse dyestuff. With molecular simulation, luteolin and glycin composed 8 stable complexes whose Laplacian values all were greater than 0, which suggested typical hydrogen bonds existing. The complex with three hydrogen bonds was proved the most stable. Both studies on thermodynamics and supramolecular simulation revealed that luteolin on wool fabric mainly depended on the weak hydrogen bonds interaction that determined the low dyefastness.