Efficient staff rostering and patient scheduling to meet outpatient demand is a very complex and dynamic task. Due to fluctuations in demand and specialist availability, specialist allocation must be very flexible and...Efficient staff rostering and patient scheduling to meet outpatient demand is a very complex and dynamic task. Due to fluctuations in demand and specialist availability, specialist allocation must be very flexible and non-myopic. Medical specialists are typically restricted in sub-specialization, serve several patient groups and are the key resource in a chain of patient visits to the clinic and operating room (OR). To overcome a myopic view of once-off appointment scheduling, we address the patient flow through a chain of patient appointments when allocating key resources to different patient groups. We present a new, data-driven algorithmic approach to automatic allocation of specialists to roster activities and patient groups. By their very nature, simplified mathematical models cannot capture the complexity that is characteristic to the system being modeled. In our approach, the allocation of specialists to their day-to-day activities is flexible and responsive to past and present key resource availability, as well as to past resource allocation. Variability in roster activities is actively minimized, in order to enhance the supply chain flow. With discrete-event simulation of the application case using empirical data, we illustrate how our approach improves patient Service Level (SL, percentage of patients served on-time) as well as Wait Time (days), without change in resource capacity.展开更多
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a gener...This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For comparison reasons, some well-known event set algorithms have been selected and studied, that is, the Dynamic-heap and the P-tree algorithms. To gain insight into the performance of the proposed event set algorithms and allow comparisons with the other selected algorithms, they are tested under a wide variety of conditions in an experimental way. The time needed for the execution of the Hold operation is taken as the measure for estimating the average time complexity of the algorithms. The experimental results show that the BP-tree algorithm and the IBP-tree algorithm behave very well with the event set of all the sizes and their performance is almost independent of the stochastic distributions.展开更多
文摘Efficient staff rostering and patient scheduling to meet outpatient demand is a very complex and dynamic task. Due to fluctuations in demand and specialist availability, specialist allocation must be very flexible and non-myopic. Medical specialists are typically restricted in sub-specialization, serve several patient groups and are the key resource in a chain of patient visits to the clinic and operating room (OR). To overcome a myopic view of once-off appointment scheduling, we address the patient flow through a chain of patient appointments when allocating key resources to different patient groups. We present a new, data-driven algorithmic approach to automatic allocation of specialists to roster activities and patient groups. By their very nature, simplified mathematical models cannot capture the complexity that is characteristic to the system being modeled. In our approach, the allocation of specialists to their day-to-day activities is flexible and responsive to past and present key resource availability, as well as to past resource allocation. Variability in roster activities is actively minimized, in order to enhance the supply chain flow. With discrete-event simulation of the application case using empirical data, we illustrate how our approach improves patient Service Level (SL, percentage of patients served on-time) as well as Wait Time (days), without change in resource capacity.
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
文摘This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or/P-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For comparison reasons, some well-known event set algorithms have been selected and studied, that is, the Dynamic-heap and the P-tree algorithms. To gain insight into the performance of the proposed event set algorithms and allow comparisons with the other selected algorithms, they are tested under a wide variety of conditions in an experimental way. The time needed for the execution of the Hold operation is taken as the measure for estimating the average time complexity of the algorithms. The experimental results show that the BP-tree algorithm and the IBP-tree algorithm behave very well with the event set of all the sizes and their performance is almost independent of the stochastic distributions.