As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out...As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.展开更多
Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular mul...Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.展开更多
混合式高压直流(high voltage direct current,HVDC)断路器所能承受的电流水平不仅反映了整个网络向故障点的馈能情况,同时也是其内部各开关器件承受能力的外在体现。直流(direct current,DC)电网的稳态潮流分布及故障时的电流变化情况...混合式高压直流(high voltage direct current,HVDC)断路器所能承受的电流水平不仅反映了整个网络向故障点的馈能情况,同时也是其内部各开关器件承受能力的外在体现。直流(direct current,DC)电网的稳态潮流分布及故障时的电流变化情况则是高压直流断路器载流支路及主断路器支路参数选取的重要依据。以直流电网潮流分布为基础,考虑直流电网可能存在的多种运行方式,分析高压直流断路器承受的稳态电流水平,进而为其载流支路参数选取提供参考。同时,在基于半桥子模块结构的换流器故障机理分析的基础上,进一步研究直流电网线路发生故障时的网络电流、换流器出口电流及换流器桥臂电流的变化情况,为高压直流断路器所需开断故障电流水平提供理论依据,并为高压直流断路器的主断路器支路参数及限流电感参数整定及其与换流站闭锁保护相互配合提供一定的参考。最后,在PSCAD/EMTDC仿真平台搭建的四端环网模型上验证了所提方法的正确性。展开更多
This paper investigates the small-signal stability of the hybrid high-voltage direct current(HVDC)transmission system.The system is composed of line commutated converter(LCC)as rectifier and modular multi-level conver...This paper investigates the small-signal stability of the hybrid high-voltage direct current(HVDC)transmission system.The system is composed of line commutated converter(LCC)as rectifier and modular multi-level converter(MMC)as inverter under weak AC grid condition.Firstly,the impact of short-circuit ratio(SCR)at inverter side on the system stability is investigated by eigen-analysis,and the key control parameters which have major impact on the dominant mode are identified by the participation factor and sensitivity analysis.Then,considering the quadratic index and damping ratio characteristic,an objective function for evaluating the system stability is developed,and an optimization and configuration method for control parameters is presented by the utilization of Monte Carlo method.The eigenvalue results and the electromagnetic transient(EMT)simulation results show that,with the optimized control parameters,the small-signal stability and the dynamic responses of the hybrid system are greatly improved,and the hybrid system can even operate under weak AC grid condition.展开更多
The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and ...The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.展开更多
Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inducta...Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.展开更多
基金This work was supported by National Natural Science Foundation of China(No.51261130471).
文摘As a new generation of direct current(DC)transmission technology,voltage sourced converter(VSC)based high voltage direct current(HVDC)has been widely developed and applied all over the world.China has also carried out a deep technical research and engineering application in this area,and at present,it has been stepped into a fast growing period.This paper gives a general review over China’s VSC based HVDC in terms of engineering technology,application and future development.It comprehensively analyzes the technical difficulties and future development orientation on the aspects of the main configurations of VSC based HVDC system,topological structures of converters,control and protection technologies,flexible DC cables,converter valve tests,etc.It introduces the applicable fields and current status of China’s VSC based HVDC projects,and analyzes the application trends of VSC based HVDC projects both in China and all over the world according to the development characteristics and demands of future power grids.
基金funded by SGCC Science and Technology Program under project Research on Electromagnetic Transient Simulation Technology for Large-scale MMC-HVDC Systems.
文摘Multi-terminal direct current(MTDC)grids provide the possibility of meshed interconnections between regional power systems and various renewable energy resources to boost supply reliability and economy.The modular multilevel converter(MMC)has become the basic building block for MTDC and DC grids due to its salient features,i.e.,modularity and scalability.Therefore,the MMC-based MTDC systems should be pervasively embedded into the present power system to improve system performance.However,several technical challenges hamper their practical applications and deployment,including modeling,control,and protection of the MMC-MTDC grids.This paper presents a comprehensive investigation and reference in modeling,control,and protection of the MMC-MTDC grids.A general overview of state-of-the-art modeling techniques of the MMC along with their performance in simulation analysis for MTDC applications is provided.A review of control strategies of the MMC-MTDC grids which provide AC system support is presented.State-of-the art protection techniques of the MMCMTDC systems are also investigated.Finally,the associated research challenges and trends are highlighted.
文摘混合式高压直流(high voltage direct current,HVDC)断路器所能承受的电流水平不仅反映了整个网络向故障点的馈能情况,同时也是其内部各开关器件承受能力的外在体现。直流(direct current,DC)电网的稳态潮流分布及故障时的电流变化情况则是高压直流断路器载流支路及主断路器支路参数选取的重要依据。以直流电网潮流分布为基础,考虑直流电网可能存在的多种运行方式,分析高压直流断路器承受的稳态电流水平,进而为其载流支路参数选取提供参考。同时,在基于半桥子模块结构的换流器故障机理分析的基础上,进一步研究直流电网线路发生故障时的网络电流、换流器出口电流及换流器桥臂电流的变化情况,为高压直流断路器所需开断故障电流水平提供理论依据,并为高压直流断路器的主断路器支路参数及限流电感参数整定及其与换流站闭锁保护相互配合提供一定的参考。最后,在PSCAD/EMTDC仿真平台搭建的四端环网模型上验证了所提方法的正确性。
基金This work was supported by the National Natural Science Foundation of China(No.51877077).
文摘This paper investigates the small-signal stability of the hybrid high-voltage direct current(HVDC)transmission system.The system is composed of line commutated converter(LCC)as rectifier and modular multi-level converter(MMC)as inverter under weak AC grid condition.Firstly,the impact of short-circuit ratio(SCR)at inverter side on the system stability is investigated by eigen-analysis,and the key control parameters which have major impact on the dominant mode are identified by the participation factor and sensitivity analysis.Then,considering the quadratic index and damping ratio characteristic,an objective function for evaluating the system stability is developed,and an optimization and configuration method for control parameters is presented by the utilization of Monte Carlo method.The eigenvalue results and the electromagnetic transient(EMT)simulation results show that,with the optimized control parameters,the small-signal stability and the dynamic responses of the hybrid system are greatly improved,and the hybrid system can even operate under weak AC grid condition.
基金This work was supported by the Science and Technology Program of the State Grid Corporation of China(Grant No.5100-201999330A-0-0-00).
文摘The modular multilevel converter(MMC)has been a highly promising topology in the high-voltage direct-current(HVDC)transmission area,where each arm of the MMC may consist of hundreds of series-connected submodules and an inductor.Due to its parameter inaccuracy,component aging,and so on,the component parameter in different arms of the MMC may be different,which may cause circulating current in the MMC-HVDC transmission system,and result in current deterioration,power losses,and electromagnetic interference,etc.In this paper,the circulating current suppressing(CCS)in the MMC-HVDC system,due to asymmetric arm impedance,is analyzed.Based on the mathematical analysis,a method of using an auxiliary circuit is proposed for the MMC to realize the CCS and improve the performance of the MMC-HVDC system.Simulation studies are conducted with PSCAD/EMTDC in the HVDC system,which confirms the feasibility of the proposed method.
基金supported by the National Natural Science Foundation of China(No.U1866210).
文摘Large time delay is one of the inherent features of a modular multilevel converter(MMC)-based high voltage direct current(HVDC)system and is the main factor leading to the unfavorable’negative resistance and inductance’characteristic of MMC impedance.Research indicates that this characteristic interacting with the capacitive characteristics of an AC system is the cause of high frequency resonance(HFR)in the Yu-E HVDC project.As the current controller is one of the main factors that affects the MMC impedance,a compensation control to imitate the paralleled impedance at the point of common coupling(PCC)is proposed.Therefore,the structure and parameter design of the compensation controller are core to realizing HFR suppression.There are two potentially risky frequency ranges of HFRs(around 700 Hz and 1.8 kHz)in the studied AC system within 2.0 kHz.The core concept of HFR suppression is to make the phase angle of MMC impedance smaller than 90◦in the two risky frequency ranges according to impedance stability theory.Hence,the design parameters aim to coordinate the phase angle of MMC impedance in the two risky frequency ranges.In this paper,three types of compensation controller are studied to suppress HFRs,namely,first-order low pass filter(LPF),second-order LPF,and third-order band pass filter.The results of parameter design show that the first-order LPF cannot suppress both HFRs simultaneously.The second-order LPF can suppress both HFRs,however,it introduces a DC component into the current control loop.Therefore,a high pass filter is added to form the recommended third-order controller.All parameter ranges of the compensation controller are derived using analytical expressions.Finally,the correctness of the parameter design is proofed using time-domain simulations.