It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation t...It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China
文摘It is known that exp [iA (Q] P1 - i/2)] is a unitary single-mode squeezing operator, where Q1, P1 are the coordinate and momentum operators, respectively. In this paper we employ Dirac's coordinate representation to prove that the exponential operator Sn ≡exp[iλi=1∑n(QiPi+1+Qi+1Pi))],(Qn+1=Q1,Pn+1=P1),is an n-mode squeezing operator which enhances the standard squeezing. By virtue of the technique of integration within an ordered product of operators we derive Sn's normally ordered expansion and obtain new n-mode squeezed vacuum states, its Wigner function is calculated by using the Weyl ordering invariance under similar transformations.