How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for ...How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for this type of integrals. Unfortunately it is susceptible to the system of linear equations' ill-conditioned behavior. We bring forward a universal quadrature method in this paper, which adopts Chebyshev differential matrix to solve the ordinary differential equation (ODE). This method can not only obtain the indefinite integral' function values directly, but also make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore, even if the system of linear equations in our method is ill-conditioned, TSVD method can be adopted to solve them properly and eventually obtain accurate integral results, thus making a breakthrough in Levin method's susceptivity to the system of linear equations' ill-conditioned behavior.展开更多
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a...The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.展开更多
In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
The thermal decomposition of the magnesium oxalate dihydrate in a static air atmosphere was investigated by TG-DTG techniques. The intermediate and residue of each decomposition were identified from their TG curve. Th...The thermal decomposition of the magnesium oxalate dihydrate in a static air atmosphere was investigated by TG-DTG techniques. The intermediate and residue of each decomposition were identified from their TG curve. The kinetic triplet, the activation energy E, the pre-exponential factor A and the mechanism functionsf(a) were obtained from analysis of the TG-DTG curves of thermal decomposition of the first stage and the second stage by the Popesou method and the Flynn-Wall-Ozawa method.展开更多
In this paper, we present a comparative study between the He-Laplace and Adomain decomposition method. The study outlines the significant features of two methods. We use the two methods to solve the nonlinear Ordinary...In this paper, we present a comparative study between the He-Laplace and Adomain decomposition method. The study outlines the significant features of two methods. We use the two methods to solve the nonlinear Ordinary and Partial differential equations. Laplace transformation with the homotopy method is called He-Laplace method. A comparison is made among Adomain decomposition method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easy handled by the use He’s polynomials and provides better results.展开更多
This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,w...This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach.展开更多
In this article comparative analysis of various semi-numerical schemes has beenmade for the case of squeezing flow of an incompressible viscous fluid between two largeparallel plates having no-slip at the boundaries.T...In this article comparative analysis of various semi-numerical schemes has beenmade for the case of squeezing flow of an incompressible viscous fluid between two largeparallel plates having no-slip at the boundaries.The medium of flow contains magnetohy-drodynamic(MHD)effect and having small pores.Modeled boundary value problem is solvedanalytically using Optimal homotopy asymptotic method(OHAM),homotopy perturbationmethod(HPM),differential transform method(DTM),Daftardar Jafari method(DIM)andAdomian decomposition method(ADM).For comparison purpose,residuals of these schemeshave been found and analyzed for accuracy.Analytical study indicates that DTM and DJM arequite good in tem of accuracy near the center of domain[—1,1]but the accuracy reducesconsiderably near the start and end of the given interval.HPM and OHAM residuals indicatethat OHAM surpasses HPM in terms of accuracy in the present case.展开更多
In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-differential equations. The results show that the method is very simple and effective.
The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illus...The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.展开更多
In this paper, we apply the Adomian decomposition method (ADM) for solving nonlinear system of fractional differential equations (FDEs). The existence and uniqueness of the solution are proved. The convergence of the ...In this paper, we apply the Adomian decomposition method (ADM) for solving nonlinear system of fractional differential equations (FDEs). The existence and uniqueness of the solution are proved. The convergence of the series solution and the error analysis are discussed. Some applications are solved such as fractional-order rabies model.展开更多
The aim of this paper is to discuss application of Laplace Decomposition Method with Adomian Decomposition in time-space Fractional Nonlinear Fractional Differential Equations. The approximate solutions result from La...The aim of this paper is to discuss application of Laplace Decomposition Method with Adomian Decomposition in time-space Fractional Nonlinear Fractional Differential Equations. The approximate solutions result from Laplace Decomposition Method and Adomian decomposition;those two accessions are comfortable to perform and firm when to PDEs. For caption and further representation of the thought, several examples are tool up.展开更多
We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα...We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems.展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear...The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.展开更多
In this paper, we used an efficient algorithm to obtain an analytic approximation for Volterra’s model for population growth of a species within a closed system, called the Restarted Adomian decomposition method (RAD...In this paper, we used an efficient algorithm to obtain an analytic approximation for Volterra’s model for population growth of a species within a closed system, called the Restarted Adomian decomposition method (RADM) to solve the model. The numerical results illustrate that RADM has the good accuracy.展开更多
In this research,we propose a new change in classical epidemic models by including the change in the rate of death in the overall population.The existing models like Susceptible-Infected-Recovered(SIR)and Susceptible-...In this research,we propose a new change in classical epidemic models by including the change in the rate of death in the overall population.The existing models like Susceptible-Infected-Recovered(SIR)and Susceptible-Infected-Recovered-Susceptible(SIRS)include the death rate as one of the parameters to estimate the change in susceptible,infected and recovered populations.Actually,because of the deficiencies in immunity,even the ordinary flu could cause death.If people’s disease resistance is strong,then serious diseases may not result in mortalities.The classical model always assumes a closed system where there is no new birth or death,no immigration or emigration,while in reality,such assumptions are not realistic.Moreover,the classical epidemic model does not report the change in population due to death caused by a disease.With this study,we try to incorporate the rate of change in the population of death caused by a disease,where the model is framed to reduce the curve of death along with the susceptible and infected populations.Since the rate of change turned out to be very small,we have tried to estimate it fractionally.Thus,the model is defined using fuzzy logic and is solved by two different methods:a Laplace Adomian decomposition method(LADM)and a differential transform method(DTM)for an arbitrary order α.To test its accuracy,we compared the results of both DTM and LADM with the fourth-order Runge-Kutta method(RKM-4)at α=1.展开更多
In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The techni...In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to some fifth-order Kdv equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of four examples and results of the present technique have closed agreement with approximate solutions obtained with the help of (LDM).展开更多
Theoretical analysis corresponding to the diffusion and reaction kinetics in a chemical reaction between carbon dioxide and phenyl glycidyl ether solution is presented. Analytical expressions pertaining to the concent...Theoretical analysis corresponding to the diffusion and reaction kinetics in a chemical reaction between carbon dioxide and phenyl glycidyl ether solution is presented. Analytical expressions pertaining to the concentration of carbon dioxide (CO2), phenyl glycidyl ether solution (PGE) and flux are obtained in terms of reaction rate constants. In this paper, a powerful analytical method, called the Adomian decomposition method (ADM) is used to obtain approximate analytical solutions for nonlinear differential equations. Furthermore, in this work the numerical simulation of the problem is also reported using Scilab/Matlab program. An agreement between analytical and numerical results is noted.展开更多
文摘How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for this type of integrals. Unfortunately it is susceptible to the system of linear equations' ill-conditioned behavior. We bring forward a universal quadrature method in this paper, which adopts Chebyshev differential matrix to solve the ordinary differential equation (ODE). This method can not only obtain the indefinite integral' function values directly, but also make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore, even if the system of linear equations in our method is ill-conditioned, TSVD method can be adopted to solve them properly and eventually obtain accurate integral results, thus making a breakthrough in Levin method's susceptivity to the system of linear equations' ill-conditioned behavior.
文摘The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
基金Project supported by the Natural Science Foundation of Hebei Province (No. 202140) and Hebei Education Department (No. 2004325).
文摘The thermal decomposition of the magnesium oxalate dihydrate in a static air atmosphere was investigated by TG-DTG techniques. The intermediate and residue of each decomposition were identified from their TG curve. The kinetic triplet, the activation energy E, the pre-exponential factor A and the mechanism functionsf(a) were obtained from analysis of the TG-DTG curves of thermal decomposition of the first stage and the second stage by the Popesou method and the Flynn-Wall-Ozawa method.
文摘In this paper, we present a comparative study between the He-Laplace and Adomain decomposition method. The study outlines the significant features of two methods. We use the two methods to solve the nonlinear Ordinary and Partial differential equations. Laplace transformation with the homotopy method is called He-Laplace method. A comparison is made among Adomain decomposition method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easy handled by the use He’s polynomials and provides better results.
基金funded by the Deanship of Research in Zarqa University,Jordan。
文摘This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach.
文摘In this article comparative analysis of various semi-numerical schemes has beenmade for the case of squeezing flow of an incompressible viscous fluid between two largeparallel plates having no-slip at the boundaries.The medium of flow contains magnetohy-drodynamic(MHD)effect and having small pores.Modeled boundary value problem is solvedanalytically using Optimal homotopy asymptotic method(OHAM),homotopy perturbationmethod(HPM),differential transform method(DTM),Daftardar Jafari method(DIM)andAdomian decomposition method(ADM).For comparison purpose,residuals of these schemeshave been found and analyzed for accuracy.Analytical study indicates that DTM and DJM arequite good in tem of accuracy near the center of domain[—1,1]but the accuracy reducesconsiderably near the start and end of the given interval.HPM and OHAM residuals indicatethat OHAM surpasses HPM in terms of accuracy in the present case.
文摘In this paper, the Combined Laplace Transform-Adomian Decomposition Method is used to solve nth-order integro-differential equations. The results show that the method is very simple and effective.
基金The present paper is in honor of late Professor R.Thom as a great mathematician, a great scientist,also a great thinker of modern times.
文摘The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.
文摘In this paper, we apply the Adomian decomposition method (ADM) for solving nonlinear system of fractional differential equations (FDEs). The existence and uniqueness of the solution are proved. The convergence of the series solution and the error analysis are discussed. Some applications are solved such as fractional-order rabies model.
文摘The aim of this paper is to discuss application of Laplace Decomposition Method with Adomian Decomposition in time-space Fractional Nonlinear Fractional Differential Equations. The approximate solutions result from Laplace Decomposition Method and Adomian decomposition;those two accessions are comfortable to perform and firm when to PDEs. For caption and further representation of the thought, several examples are tool up.
文摘We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems.
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘The Adomian decomposition method (ADM) can be used to solve a wide range of problems and usually gets the solution in a series form. In this paper, we propose two-step Adomian Decomposition Method (TSAM) for nonlinear integro-differential equations that will facilitate the calculations. In this modification, compared to the standard Adomian decomposition method, the size of calculations was reduced. This modification also avoids computing Adomian polynomials. Numerical results are given to show the efficiency and performance of this method.
文摘In this paper, we used an efficient algorithm to obtain an analytic approximation for Volterra’s model for population growth of a species within a closed system, called the Restarted Adomian decomposition method (RADM) to solve the model. The numerical results illustrate that RADM has the good accuracy.
文摘In this research,we propose a new change in classical epidemic models by including the change in the rate of death in the overall population.The existing models like Susceptible-Infected-Recovered(SIR)and Susceptible-Infected-Recovered-Susceptible(SIRS)include the death rate as one of the parameters to estimate the change in susceptible,infected and recovered populations.Actually,because of the deficiencies in immunity,even the ordinary flu could cause death.If people’s disease resistance is strong,then serious diseases may not result in mortalities.The classical model always assumes a closed system where there is no new birth or death,no immigration or emigration,while in reality,such assumptions are not realistic.Moreover,the classical epidemic model does not report the change in population due to death caused by a disease.With this study,we try to incorporate the rate of change in the population of death caused by a disease,where the model is framed to reduce the curve of death along with the susceptible and infected populations.Since the rate of change turned out to be very small,we have tried to estimate it fractionally.Thus,the model is defined using fuzzy logic and is solved by two different methods:a Laplace Adomian decomposition method(LADM)and a differential transform method(DTM)for an arbitrary order α.To test its accuracy,we compared the results of both DTM and LADM with the fourth-order Runge-Kutta method(RKM-4)at α=1.
文摘In this paper, we develop a method to calculate numerical and approximate solution of some fifth-order Korteweg-de Vries equations with initial condition with the help of Laplace Decomposition Method (LDM). The technique is based on the application of Laplace transform to some fifth-order Kdv equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of four examples and results of the present technique have closed agreement with approximate solutions obtained with the help of (LDM).
文摘Theoretical analysis corresponding to the diffusion and reaction kinetics in a chemical reaction between carbon dioxide and phenyl glycidyl ether solution is presented. Analytical expressions pertaining to the concentration of carbon dioxide (CO2), phenyl glycidyl ether solution (PGE) and flux are obtained in terms of reaction rate constants. In this paper, a powerful analytical method, called the Adomian decomposition method (ADM) is used to obtain approximate analytical solutions for nonlinear differential equations. Furthermore, in this work the numerical simulation of the problem is also reported using Scilab/Matlab program. An agreement between analytical and numerical results is noted.