期刊文献+

The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems 被引量:1

The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems
下载PDF
导出
摘要 We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem {D α0+u(x)=f(x,u(x)) ,0〈x〈1,3〈α≤4u(0)=α0, u″(0)=α2u(1)=β0,u″(1)β2where Dα 0 +u is Caputo fractional derivative and α0, α2, β0, β2 is not zero at all, and f : [0, 1] × R→R is continuous. The calculated numerical results show reliability and efficiency of the algorithm given. The numerical procedure is tested on lineax and nonlinear problems.
作者 WANG Jie
机构地区 Undergraduate College
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第2期238-245,共8页 数学季刊(英文版)
关键词 Caputo fractional derivative Adomian decomposition method differential equations Caputo fractional derivative Adomian decomposition method differential equations
  • 相关文献

参考文献19

  • 1HE Ji-huan. Nonlinear Oscillation with Fractional Derivative and Its Applications, in- International Con- ference on Vibrating Engineering'98[C]. Dalian: Northeastern University Press, 1998. 被引量:1
  • 2HE Ji-huan. Some applications of nonlinear fractional differential equations and their approximations[J]. Bull Sei Technol, 1999, 15: 86-90. 被引量:1
  • 3ADOMIAN G, RACH R. Analytic solution of nonlinear boundary-value problems in several dimensions[J]. J Math Anal Appl, 1993, 174: 118-127. 被引量:1
  • 4ADOMIAN G, ELORD M, RACH R. New approach to boundary value equations and application to a generalization of Airy's equation[J]. J Math Anal Appl, 1989, 140: 554-568. 被引量:1
  • 5JAFARI H, DAFTARDAR-GEJJI V. Solving linear and non-linear fractional diffusion and wave equations by Adomian decomposition[J]. Appl Math Comput, 2006, 180: 488-497. 被引量:1
  • 6METZLER R, KLAFTER J. Boundary value problems for fractional diffusion equations[J]. Physica A, 2000, 278: 107-125. 被引量:1
  • 7WAZWAZ A. A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems[J]. Comput Math Appl, 2001, 41: 1237-1244. 被引量:1
  • 8ADOMIAN G. A review of the decomposition method in applied mathematics[J]. J Math Anal Appl, 1988, 135: 501-544. 被引量:1
  • 9ADOMIAN G. Solving Frontier Problems of Physics: The Decomposition Method[M]. Boston: Kluwer Academic Publishers, 1994. 被引量:1
  • 10BIAZAR J, BABOLIAN E, ISLAM R. Solution of the system of ordinary differential equations by Adomian decomposition method[J]. Appl Math Comput, 2004, 147 (3): 713-719. 被引量:1

同被引文献13

  • 1PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999. 被引量:1
  • 2KILBAS A A, SRIVASTAVA M, TRUJILLO J J. Theory and Applications of Fractional Differential Equa- tions[M]. Amterdam: Elsevier Science Limited, 2006. 被引量:1
  • 3LAKSHMIKANTHAM V, LEELA S, VASUNDHARA DEVI J. Theory of Fractional Dynamic Systems[M]. Cambridge: Cambridge Academic Publishers, 2009. 被引量:1
  • 4MILLER K S, ROSS B. An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. New York: Wiley, 1993. 被引量:1
  • 5HOLM M. The Lapace transform in discrete fractional calculus[J]. Computers Mathematics with Applica- tions, 2011, 62(2): 1591-1601. 被引量:1
  • 6ABDELJAWAD T. On Rieman and Caputo fractional difference[J]. Comput Math Appl, 2011, 62(3): 1602- 1611. 被引量:1
  • 7ATICI F M, ELOE P W. Initial value problems in discrete fractional calculus[J]. Pro Amer Math-Soc, 2009 137(2): 981-989. 被引量:1
  • 8GOODRICH C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. Computers Mathematics with Applications, 2011, 62(3): 1251-1268. 被引量:1
  • 9GOODRICH C S. On discrete sequential fractional boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2011, 385(1): 111-124. 被引量:1
  • 10GOODRICH C S. Existence of a positive solution to a system of discrete fractional boundary value prob- lems[J]. Applied Mathematics and Computation, 2011, 217(9): 4740-4753. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部