To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesen-chymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented ...To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesen-chymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented with different inducing factors and biomaterials to construct functional tissue- engineered skin. The results showed that after 72 h induction, BMSCs displayed morphologic changes such as typical epidermal cell arrangement, from spindle shape to round or oval; tonofibrils, melano-somes and keratohyaline granules were observed under a transmission electronic microscope. The differentiated cells expressed epidermal stem cell surface marker CK19 (59.66% ± 4.2%) and epidermal cells differentiation marker CK10. In addition, the induced epidermal cells acquired the anti-radiation capacity featured by lowered apoptosis following exposure to UVB. On the other hand, the collagen microfibrils deposition was noticed under a transmission electronic microscope after differentiating into dermis fibroblasts; RT-PCR identified collagen type I mRNA expression in differentiated cells; radioimmunoassay detected the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8) (up to 115.06 pg/mL and 0.84 ng/mL, respectively). Further in vivo implanting BMSCs with scaffold material short-ened skin wound repair significantly. In one word, autogenic BMSCs have the potential to differentiate into epidermal cells and fibroblasts in vitro, and show clinical feasibility acting as epidermis-like and dermis-like seed cells in skin engineering.展开更多
Background Diabetic wound is one of the most serious complications of diabetes mellitus. There are no significantly effective therapies for chronic non-healing diabetes ulcer so far. This study aimed to explore the fe...Background Diabetic wound is one of the most serious complications of diabetes mellitus. There are no significantly effective therapies for chronic non-healing diabetes ulcer so far. This study aimed to explore the feasibility of healing impaired wound using artificial dermis constructed with human adipose derived stem cells (ASCs) and poly(L-glutamic acid)/chitosan (PLGA/CS) scaffold in streptozotocin-induced diabetic mice. Methods ASCs were isolated from fresh human lipoaspirates and expanded ex vivo for three passages, and then cells were seeded onto PLGNCS scaffold to form artificial dermis. Expression of VEGF and TGFI31 by ASCs presented in artificial dermis was determined. The artificial dermis was transplanted to treat the 20 mm ~ 20 mm full-thickness cutaneous wound created on the back of diabetic mice. Wound treated with scaffold alone and without treatment, and wound in normal non-diabetic mice served as control. Results Cells growing within scaffold showed great proliferation potential, depositing abundant collagen matrix. Meanwhile, expression of VEGF and TGF-131 by seeded ASCs maintained at a consistent high level. After treated with ASC based artificial dermis, diabetic wounds exhibited significantly higher healing rate compared with wounds treated with scaffold alone or without treatment. Histological examination also demonstrated an improvement in cutaneous restoration with matrix deposition and organization. Further quantitative analysis showed that there was a significant increase in dermis thickness and collagen content on artificial dermis treated wounds. Conclusion ASC/PLGA artificial dermis can effectively accelerate diabetic wound healing by promoting angiogenic growth factors and dermal collagen synthesis.展开更多
基金Supported by the Major Technology Program of Beijing Municipal Science & Tech-nology Commission ( Grant No. H060920050130) the Major State Basic Re-search Development Program of China (Grant No. 2005CB522702)
文摘To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesen-chymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented with different inducing factors and biomaterials to construct functional tissue- engineered skin. The results showed that after 72 h induction, BMSCs displayed morphologic changes such as typical epidermal cell arrangement, from spindle shape to round or oval; tonofibrils, melano-somes and keratohyaline granules were observed under a transmission electronic microscope. The differentiated cells expressed epidermal stem cell surface marker CK19 (59.66% ± 4.2%) and epidermal cells differentiation marker CK10. In addition, the induced epidermal cells acquired the anti-radiation capacity featured by lowered apoptosis following exposure to UVB. On the other hand, the collagen microfibrils deposition was noticed under a transmission electronic microscope after differentiating into dermis fibroblasts; RT-PCR identified collagen type I mRNA expression in differentiated cells; radioimmunoassay detected the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8) (up to 115.06 pg/mL and 0.84 ng/mL, respectively). Further in vivo implanting BMSCs with scaffold material short-ened skin wound repair significantly. In one word, autogenic BMSCs have the potential to differentiate into epidermal cells and fibroblasts in vitro, and show clinical feasibility acting as epidermis-like and dermis-like seed cells in skin engineering.
文摘Background Diabetic wound is one of the most serious complications of diabetes mellitus. There are no significantly effective therapies for chronic non-healing diabetes ulcer so far. This study aimed to explore the feasibility of healing impaired wound using artificial dermis constructed with human adipose derived stem cells (ASCs) and poly(L-glutamic acid)/chitosan (PLGA/CS) scaffold in streptozotocin-induced diabetic mice. Methods ASCs were isolated from fresh human lipoaspirates and expanded ex vivo for three passages, and then cells were seeded onto PLGNCS scaffold to form artificial dermis. Expression of VEGF and TGFI31 by ASCs presented in artificial dermis was determined. The artificial dermis was transplanted to treat the 20 mm ~ 20 mm full-thickness cutaneous wound created on the back of diabetic mice. Wound treated with scaffold alone and without treatment, and wound in normal non-diabetic mice served as control. Results Cells growing within scaffold showed great proliferation potential, depositing abundant collagen matrix. Meanwhile, expression of VEGF and TGF-131 by seeded ASCs maintained at a consistent high level. After treated with ASC based artificial dermis, diabetic wounds exhibited significantly higher healing rate compared with wounds treated with scaffold alone or without treatment. Histological examination also demonstrated an improvement in cutaneous restoration with matrix deposition and organization. Further quantitative analysis showed that there was a significant increase in dermis thickness and collagen content on artificial dermis treated wounds. Conclusion ASC/PLGA artificial dermis can effectively accelerate diabetic wound healing by promoting angiogenic growth factors and dermal collagen synthesis.