期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
停留点空间聚类在景区热点分析中的应用 被引量:26
1
作者 张文元 谈国新 朱相舟 《计算机工程与应用》 CSCD 北大核心 2018年第4期263-270,共8页
各种集成位置服务(LBS)的社交和旅游类APP的广泛应用,产生了大量轨迹空间数据,利用这些轨迹数据挖掘游客聚集密度高的热门景点区域,对景区的智慧服务和应急管理具有重要意义。为此,提出了一种基于轨迹停留点空间聚类的景区热点分析方法... 各种集成位置服务(LBS)的社交和旅游类APP的广泛应用,产生了大量轨迹空间数据,利用这些轨迹数据挖掘游客聚集密度高的热门景点区域,对景区的智慧服务和应急管理具有重要意义。为此,提出了一种基于轨迹停留点空间聚类的景区热点分析方法。重点研究了聚类速度快、能处理噪声、可以发现空间任意形状聚簇的DBSCAN算法,针对其参数需人工选择的不足,提出了一种根据数据统计分布特性来自适应确定参数的改进方法。分别采用人工合成二维数据集、四维Iris真实数据集和景区轨迹停留点三种不同的数据进行了DBSCAN聚类分析及对比实验,结果表明该方法可以自动产生合理的聚簇划分,优于传统DBSCAN和k-means等算法。最后,依据轨迹停留点的空间聚类结果,在Arc GIS软件中实现Getis-Ord Gi*热点分析与制图,并依据分析结果对不同旅游景点进行热度分级,形成的热门景点分布与景区掌握的实际热度信息基本一致,证实了提出方法的有效性。 展开更多
关键词 停留点 空间聚类 热点分析 dbscan算法 轨迹 景区
下载PDF
一种基于k-均值的DBSCAN算法参数动态选择方法 被引量:23
2
作者 王兆丰 单甘霖 《计算机工程与应用》 CSCD 北大核心 2017年第3期80-86,共7页
为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离... 为解决DBSCAN聚类算法的Eps及MinPts参数选择问题,提出一种领域无关的参数动态选择方法。首先,基于k-均值算法对数据集进行初步聚类,聚类中采用最大最小距离方法确定初始聚类中心。其次,针对k-均值聚类结果,计算统计各聚类中样本间距离的分布情况,选择使得具有最大样本对数的距离值作为对应类的Eps值,并通过Eps获得MinPts值。最后,对DBSCAN算法进行改进,使其可根据当前核心点所属k-均值聚类对应的Eps对其运行值进行自适应调整。将上述思想运用于未知协议条件下的比特流聚类分析,结果表明,在无需用户指定Eps及MinPts的条件下,即可获得满意的聚类结果,提高了算法的适用性和准确率。 展开更多
关键词 聚类 一种经典的基于密度的聚类算法(dbscan) 参数选择 K-均值算法 未知协议
下载PDF
整合DBSCAN和改进SMOTE的过采样算法 被引量:16
3
作者 王亮 冶继民 《计算机工程与应用》 CSCD 北大核心 2020年第18期111-118,共8页
针对SMOTE(Synthetic Minority Over-sampling Technique)等传统过采样算法存在的忽略类内不平衡、扩展少数类的分类区域以及合成的新样本高度相似等问题,基于综合考虑类内不平衡和合成样本多样性的思想,提出了一种整合DBSCAN和改进SMOT... 针对SMOTE(Synthetic Minority Over-sampling Technique)等传统过采样算法存在的忽略类内不平衡、扩展少数类的分类区域以及合成的新样本高度相似等问题,基于综合考虑类内不平衡和合成样本多样性的思想,提出了一种整合DBSCAN和改进SMOTE的过采样算法DB-MCSMOTE(DBSCAN and Midpoint Centroid Synthetic Minority Over-sampling Technique)。该算法对少数类样本进行DBSCAN聚类,根据提出的簇密度分布函数,计算各个簇的簇密度和采样权重,在各个簇中利用改进的SMOTE算法(MCSMOTE)在相距较远的少数类样本点之间的连线上进行过采样,提高合成样本的多样性,得到新的类间和类内综合平衡数据集。通过对一个二维合成数据集和九个UCI数据集的实验表明,DB-MCSMOTE可以有效提高分类器对少数类样本和整体数据集的分类性能。 展开更多
关键词 过采样 类内不平衡 少数类 多样性 SMOTE算法 dbscan算法
下载PDF
基于KD树改进的DBSCAN聚类算法 被引量:11
4
作者 陈文龙 时宏伟 《计算机系统应用》 2022年第2期305-310,共6页
针对DBSCAN聚类算法随着数据量增大,耗时越发非常严重的问题,提出一种基于KD树改进的DBSCAN算法(以下简称KD-DBSCAN).通过KD树对数据集进行划分,构造邻域对象集,提前区分出噪声点和核心点,避免聚类过程中对噪声的邻域集计算以及加快了... 针对DBSCAN聚类算法随着数据量增大,耗时越发非常严重的问题,提出一种基于KD树改进的DBSCAN算法(以下简称KD-DBSCAN).通过KD树对数据集进行划分,构造邻域对象集,提前区分出噪声点和核心点,避免聚类过程中对噪声的邻域集计算以及加快了核心点对象的邻域集查询速度.文中以浮动车GPS数据为实验数据,对比传统DBSCAN算法和KD-DBSCAN算法的聚类效果和时间性能,实验结果表明KD-DBSCAN算法的聚类效果和传统的DBSCAN基本一致,但时间性能有很大的提升. 展开更多
关键词 聚类 dbscan算法 KD树
下载PDF
基于传感器聚类数据挖掘的物联网智慧医疗模型设计 被引量:10
5
作者 黄辰 潘永才 +3 位作者 李可维 黄本雄 皮健夫 付勇前 《传感器与微系统》 CSCD 北大核心 2014年第4期76-79,共4页
现代智慧医疗需要操作简洁、反应迅速,能够提供智慧诊断的信息化平台,提出基于物联网无线传感器技术的智慧医疗模型。系统利用附着在患者身上的各类传感器采集到的生理信息数据,采用基于密度的带有噪声的空间聚类(DBSCAN)算法的数据分... 现代智慧医疗需要操作简洁、反应迅速,能够提供智慧诊断的信息化平台,提出基于物联网无线传感器技术的智慧医疗模型。系统利用附着在患者身上的各类传感器采集到的生理信息数据,采用基于密度的带有噪声的空间聚类(DBSCAN)算法的数据分析方法,用非线性映射把患者的生理信息数据转换到高纬度的特征空间,对变换后的矢量数据进行聚类分析,从而提升聚类结果并有效辅助医务人员进行诊断。 展开更多
关键词 物联网 智慧医疗 基于密度的带有噪声的空间聚类算法
下载PDF
改进的基于密度方法的态势聚类显示算法 被引量:9
6
作者 赵恩来 郝文宁 +1 位作者 赵水宁 韩宪勇 《计算机工程》 CAS CSCD 北大核心 2010年第18期35-37,40,共4页
为解决计算机标图过程中因缩小地图比例尺而导致的标号扎堆问题,通过分析邻域参数,利用DBSCAN算法寻找相互遮挡的标号,在其质心处用标图代替扎堆标号。针对DBSCAN算法的不足,结合实际应用情况,将传统基于密度方法的圆形邻域改为针对应... 为解决计算机标图过程中因缩小地图比例尺而导致的标号扎堆问题,通过分析邻域参数,利用DBSCAN算法寻找相互遮挡的标号,在其质心处用标图代替扎堆标号。针对DBSCAN算法的不足,结合实际应用情况,将传统基于密度方法的圆形邻域改为针对应用的多边形邻域,提出改进的算法BDIRCAN。实验结果表明,BDIRCAN算法能较好地解决标号扎堆问题,避免对临近但不相互遮挡的标号进行错误的聚类。 展开更多
关键词 dbscan 算法 引射线法 聚类 标图 标号
下载PDF
基于密度聚类算法的电力通信监测分析 被引量:8
7
作者 张明明 刘文盼 +1 位作者 宋浒 夏飞 《自动化仪表》 CAS 2022年第11期73-78,共6页
为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强... 为解决传统基于密度的噪声应用空间聚类(DBSCAN)算法对输入参数设置敏感,以及传统的边缘计算框架计算成本高、计算时间过长等问题,创新性地提出了一种单遍权重K-means(SPWK)聚类算法。构建了电力通信网络故障及入侵监测模型,并将深度强化学习技术与边缘计算相结合,以降低计算成本和计算时长。仿真试验结果表明:SPWK聚类算法的迭代次数更少,平均执行时间以及总聚类时间分别低于其他算法67.5%、37.5%,加速比高出76.4%以上,聚类效率更高;边缘计算优化方法的服务器占用时间以及计算等待时间分别低于其他算法70.4%以上和79.2%以上,性能更优;电力通信监测模型对异常数据的平均识别准确率高出其他算法23.86%以上,入侵检测率高出其他算法4.8%以上,误报率降低65.4%以上,具备优异的检测性能。综上所述,所提故障及入侵监测模型以及边缘计算优化方法的性能均优于其他流行方法,适合在电力通信监测研究中推广使用。 展开更多
关键词 基于密度的噪声应用空间聚类算法 单遍权重K-means聚类算法 边缘计算 电力通信监测 故障检测 入侵检测
下载PDF
阈值优化的文本密度聚类算法 被引量:6
8
作者 马素琴 施化吉 《计算机工程与应用》 CSCD 北大核心 2011年第17期134-136,共3页
针对DBSCAN算法的聚类性能受全局阈值影响而降低的问题,提出一种阈值优化的文本密度聚类算法。该算法使用k-近邻距离对对象进行排序,通过分位数区分密度不同的各序列,找到与其对应的优化,根据优化阈值使用密度聚类方法对对象进行聚类。... 针对DBSCAN算法的聚类性能受全局阈值影响而降低的问题,提出一种阈值优化的文本密度聚类算法。该算法使用k-近邻距离对对象进行排序,通过分位数区分密度不同的各序列,找到与其对应的优化,根据优化阈值使用密度聚类方法对对象进行聚类。改进后的聚类算法克服了阈值选取对聚类结果影响的问题,提高了聚类精确度和时间效率。采用树形结构存储聚簇,增加了聚簇的可读性。实验结果证明了该算法的有效性。 展开更多
关键词 文本挖掘 文本聚类 一个基于高密度连接区域的密度聚类方法 一种阈值优化的文本密度聚类算法 分位数
下载PDF
基于DBSCAN算法的恐怖主义风险评估模型——以铁路系统为例 被引量:4
9
作者 赵传鑫 刘明辉 《科学技术与工程》 北大核心 2021年第8期3206-3213,共8页
为了对铁路系统涉恐事件进行风险管理,遏制铁路系统恐怖袭击事件的发生,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的铁路系统恐怖袭击风险评估方法。首先对1970—2017年发生的铁路系统恐怖袭... 为了对铁路系统涉恐事件进行风险管理,遏制铁路系统恐怖袭击事件的发生,提出基于DBSCAN(density-based spatial clustering of applications with noise)算法的铁路系统恐怖袭击风险评估方法。首先对1970—2017年发生的铁路系统恐怖袭击案件进行统计分析,然后采用DBSCAN算法对恐怖袭击发生次数、死亡人数和受伤人数3项风险评价指标进行聚类分析,最终客观计算出几类袭击方式、袭击目标和86个国家的风险。结果表明,该方法的分析过程避免了人工赋值和专家打分策略,评估结果更具客观性和真实性,适用于反恐情报工作的风险评估领域。 展开更多
关键词 dbscan算法 聚类分析 铁路 风险评估
下载PDF
多编队目标先后出现时的无先验信息跟踪方法 被引量:4
10
作者 熊伟 顾祥岐 +1 位作者 徐从安 崔亚奇 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1619-1626,共8页
针对多编队机动目标先后出现时的跟踪问题,该文提出了一种基于交互式多模型高斯混合概率假设密度滤波(IMM-GM-PHD)算法的无先验信息跟踪方法。首先,在IMM-GM-PHD算法预测过程完成的基础上,引入密度检测机制,利用相关域为所有预测高斯分... 针对多编队机动目标先后出现时的跟踪问题,该文提出了一种基于交互式多模型高斯混合概率假设密度滤波(IMM-GM-PHD)算法的无先验信息跟踪方法。首先,在IMM-GM-PHD算法预测过程完成的基础上,引入密度检测机制,利用相关域为所有预测高斯分量挑选有效量测,结合密度聚类(DBSCAN)算法检测是否出现新编队目标。其次,在IMM-GM-PHD算法状态更新完成的基础上,利用更新高斯分量的组成情况完成模型概率的更新。最后,在状态估计优化过程中,结合编队目标的特点,加入相似度判别技术,利用杰森-香农(JS)散度度量高斯分量间的相似度,剔除没有相似分量的高斯分量,进一步优化估计结果。仿真结果表明,该文方法能够快速有效地跟踪非同时出现的多编队机动目标,具有较好的跟踪性能。 展开更多
关键词 多编队机动目标 交互式多模型高斯混合概率假设密度滤波算法 相关域 密度聚类算法 杰森-香农散度
下载PDF
基于DBSCAN算法和多源数据的缺失公交到站数据修补 被引量:4
11
作者 王成 崔紫薇 +1 位作者 杜梓林 高悦尔 《计算机应用》 CSCD 北大核心 2019年第11期3184-3190,共7页
针对缺失公交到站信息修补方法考虑因素较少、准确度低、鲁棒性差的现状,提出了基于DBSCAN算法和多源数据的缺失公交到站数据修补方法。该方法使用公交全球定位系统(GPS)、公交集成电路卡(IC)等多源数据进行缺失到站信息的修补。对于缺... 针对缺失公交到站信息修补方法考虑因素较少、准确度低、鲁棒性差的现状,提出了基于DBSCAN算法和多源数据的缺失公交到站数据修补方法。该方法使用公交全球定位系统(GPS)、公交集成电路卡(IC)等多源数据进行缺失到站信息的修补。对于缺失的到站名称、到站经纬度数据,用已有完整到站数据和静态线路信息关联分析进行修补。对于缺失的到站时刻数据,则按以下步骤进行修补:首先,对每一个缺失数据站点与其最近的未缺失数据站点,将这两站点间历史完整到站数据的行程时间和班次时序进行基于DBSCAN算法的聚类;其次,判断研究班次的两个相邻的数据完整的班次所属簇是否为同一个簇,若为同一个簇则不作改变,否则将两个簇合并;最后,将簇中点对应最大行程时间作为缺失行程时间判断是否有乘客在该站点上车刷卡,若有则由乘客开始刷卡时刻推算到站时刻,若无则将簇中点对应最大、最小行程时间的均值作为缺失行程时间推算到站时刻。以厦门市公交到站数据为例,在缺失到站名称、经纬度修补中,基于GPS数据聚类的方法、基于极大概率估计的方法和所提方法皆可进行100%的修补;在缺失到站时刻修补中,所提方法的平均相对误差比两种对比方法分别低0.0301%和0.0004%,相关系数比对比方法分别高0.005和0.0075。实验结果表明,所提算法在缺失公交到站数据修补中能有效提高修补的准确度,降低缺失站点个数变化对于准确度的影响。 展开更多
关键词 缺失到站数据修补 dbscan算法 到站经纬度 到站时刻 多源数据
下载PDF
基于DBIRCH算法的Argo剖面数据聚类 被引量:2
12
作者 邬满 张万桢 +1 位作者 孙苗 林森 《吉林大学学报(信息科学版)》 CAS 2020年第5期568-577,共10页
为解决实时分析处理的海洋Argo浮标剖面观测数据特有的数据密度较高、快速响应且需要识别任意形状簇等问题,提出了一种可通过单次扫描数据集进行有效处理的低复杂度聚类算法DBIRCH(Density-Based Balanced Iterative Reducing and Clust... 为解决实时分析处理的海洋Argo浮标剖面观测数据特有的数据密度较高、快速响应且需要识别任意形状簇等问题,提出了一种可通过单次扫描数据集进行有效处理的低复杂度聚类算法DBIRCH(Density-Based Balanced Iterative Reducing and Clustering Using Hierarchies)。该算法通过使用新引入的参数密度阈值修正因子,动态的更新限制CF(Clustering Feature)树生长的约束系数子空间阈值,同时结合密度关联思想在不同邻域内多次建立CF树且合并,最终以核心CF树子节点为聚类结果输出,避免了BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)算法对参数的过度依赖,同时因能处理任意形状簇从而提升了数据处理的整体鲁棒性,提高了处理Argo剖面监测数据的时效性和算法的整体吞吐速度。为测试算法的综合性能,使用真实Argo浮标剖面实时监测数据集,并根据不同的参数对算法做出多组对比实验,同时使用不同评价指标对算法从运行时间和聚类准确率上进行综合评估,从全局角度分析该算法在DBSCAN(Density-Based Spatial Clustering of Applications with Noise)、BIRCH及DBIRCH 3种不同算法中综合聚类性能最优。实验结果表明,在3种算法中,BIRCH算法运算速度最快,但准确率最低;DBSCAN算法聚类性能高于BIRCH算法,但运算速度最慢;改进的DBIRCH算法运算效率略低于BIRCH算法,但聚类准确率最高。 展开更多
关键词 ARGO浮标 聚类分析 BIRCH算法 dbscan算法 DBIRCH算法
下载PDF
改进DBSCAN算法下的轨迹点到充电站位置的探测方法 被引量:2
13
作者 朱俊杰 袁嘉铭 《北京测绘》 2023年第7期1037-1044,共8页
在当前新能源汽车快速发展的背景下,针对相关充电设施位置信息更新缓慢等问题,如何通过第三方数据得到工作状态正常的充电站点分布具有重要意义。本文分析了新能源汽车充电停留轨迹数据的典型特征,并基于这些特征构建了时空关联静动(Sto... 在当前新能源汽车快速发展的背景下,针对相关充电设施位置信息更新缓慢等问题,如何通过第三方数据得到工作状态正常的充电站点分布具有重要意义。本文分析了新能源汽车充电停留轨迹数据的典型特征,并基于这些特征构建了时空关联静动(Stop/Move)模型。利用新能源汽车轨迹数据作为数据源,采用具有噪声的基于密度的聚类(DBSCAN)算法来检测满足充电停留点的点簇,并进一步探测充电站的位置。同时,针对DBSCAN算法具有高时间复杂度的问题,通过构建K维空间树(KD树)数据结构提高了算法执行效率;针对不同参数会影响DBSCAN算法聚类结果的问题,运用邻域参数自适应优化方法提升了轨迹点的聚类效果。利用深圳市的新能源车轨迹数据进行实验分析,结果表明,相比原始DBSCAN算法和k均值聚类(K-MEANS)算法,改进DBSCAN算法提高了算法执行效率,对真实充电站点探测成功率较高。 展开更多
关键词 轨迹点 K维空间树 具有噪声的基于密度的聚类算法 兴趣点探测
下载PDF
多空间尺度融合的出行轨迹规律分析
14
作者 陆妍玲 黄娅琦 +3 位作者 王杰 黄露 赵毅 李景文 《科学技术与工程》 北大核心 2023年第20期8530-8539,共10页
多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东... 多源时空轨迹数据隐含丰富的城市出行信息,通过对其进行挖掘、处理和分析,可以找到个体与群体之间的交互关系。针对轨迹数据挖掘研究范围单一,缺少多空间尺度研究的问题,提出一种融合多空间尺度特征的出行轨迹数据挖掘分析方法。以广东为例,结合社交媒体腾讯用户密度(Tencent user density,TUD)数据集,通过具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)聚类算法与局部密度峰值计算法提取时空相似性轨迹区域,进而簇类分成一系列热点区域,获得不同时间粒度、不同空间尺度下的出行轨迹规律特征。这能够实现在不同空间尺度融合下展示同一地区的热点区域,进一步探讨出行轨迹的规律变化。可见所提出的方法为利用时空大数据进行城市空间结构研究提供科学参考。 展开更多
关键词 多空间尺度 具有噪声的基于密度的聚类方法(dbscan)算法 局部密度峰值 热点区域 时空分析
下载PDF
基于AIS数据的海上电子围栏选址
15
作者 崔志伟 张宇琳 +1 位作者 张飞舟 高姗 《导航定位学报》 CSCD 2023年第4期49-55,共7页
针对电子围栏在海洋交通管理应用中的选址粗放问题,利用船舶自动识别系统(AIS)数据聚类分析实现海上电子围栏的选址:通过数据清洗和特征抽取对AIS原始数据进行筛选,构建具有时序特征的属性数组;并采用改进的基于密度聚类(DBSCAN)算法对... 针对电子围栏在海洋交通管理应用中的选址粗放问题,利用船舶自动识别系统(AIS)数据聚类分析实现海上电子围栏的选址:通过数据清洗和特征抽取对AIS原始数据进行筛选,构建具有时序特征的属性数组;并采用改进的基于密度聚类(DBSCAN)算法对AIS数据进行聚类计算,挖掘分析出船舶的实际空间分布特征;然后给出海上电子围栏选址的具体方法和流程;最后以最小外接矩形方法获得研究区域电子围栏边界位置。实验结果表明,该方法获取的海上电子围栏在需求覆盖率、流速稳定性和靠近航道距离等方面的性能都有较大的提高,具有较为广阔的应用前景,可为港口的精细化、科学化管理提供技术支撑。 展开更多
关键词 密度聚类(dbscan)算法 最小外接矩形 电子围栏 自动识别系统 有效性分析
下载PDF
一种改进的毫米波雷达聚类算法 被引量:5
16
作者 鞠夕强 孟文 +1 位作者 孟祥印 谢江鹏 《科学技术与工程》 北大核心 2021年第20期8537-8543,共7页
针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给... 针对毫米波雷达数据均匀性差,数据量小,噪点多等问题,提出一种基于DBSCAN(density-based spatial clustering of applications with noise)的雷达自适应聚类算法。改进算法能够根据K近邻距离和目标反射截面自适应调整聚类半径。首先给出一种聚类半径根据K近邻距离动态调整的机制:目标第K个近邻的距离与阈值相比较,以确定阈值半径取值。再提取雷达提供的目标反射截面,基于该值计算目标假象半径作为聚类半径的补充量。实现根据目标反射截面与数据稀疏程度自适应聚类的效果。将改进算法与不同参数的DBSCAN聚类算法在真实雷达点云数据进行实验对比。相较于选取合适参数的DBSCAN算法,改进算法能够更好适应毫米波雷达点云特征,对行人目标识别准确率提高4.18%,对车辆目标识别准确率提高5.63%。 展开更多
关键词 毫米波雷达 自适应聚类 改进dbscan算法 高级驾驶辅助系统(ADAS) 数据聚类
下载PDF
基于DDTW距离与DBSCAN算法的户变关系识别方法 被引量:29
17
作者 刘苏 黄纯 +2 位作者 侯帅帅 黄世付 李建奇 《电力系统自动化》 EI CSCD 北大核心 2021年第18期71-77,共7页
针对低压配电台区拓扑结构中户变关系缺失或异常的问题,提出了一种基于导数动态时间弯曲(DDTW)算法与基于密度的有噪空间聚类应用(DBSCAN)算法的户变关系识别方法。首先,采用DDTW算法对台区配电变压器(以下简称台变)低压侧电压和用户电... 针对低压配电台区拓扑结构中户变关系缺失或异常的问题,提出了一种基于导数动态时间弯曲(DDTW)算法与基于密度的有噪空间聚类应用(DBSCAN)算法的户变关系识别方法。首先,采用DDTW算法对台区配电变压器(以下简称台变)低压侧电压和用户电压的时间序列进行相似性分析。然后,根据DDTW距离对台变和用户进行聚类得到户变关系的概率性结果,减小聚类算法参数对聚类结果的影响。该方法能够对时间间隔不同、不等长的电压时间序列进行分析,对电压数据缺失或异常不敏感,且不需要人为设定阈值,户变关系识别准确性高。最后,通过实例分析验证了所提方法的有效性。 展开更多
关键词 配电网 低压拓扑 户变关系 导数动态时间弯曲(DDTW)距离 基于密度的有噪空间聚类应用(dbscan)算法
下载PDF
基于聚类和时序相关的重点雷达信号快速识别 被引量:7
18
作者 张怡霄 郭文普 +2 位作者 康凯 姚云龙 王攀 《系统工程与电子技术》 EI CSCD 北大核心 2020年第3期597-602,共6页
针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSC... 针对传统雷达信号识别方法对重点目标识别的针对性、时效性不强的问题,提出一种基于聚类和时序相关的重点雷达信号实时识别方法。首先,依据具有噪声的基于密度的聚类(density-based spatial clustering of application with noise,DBSCAN)算法对侦获信号的脉冲描述字进行分选;而后,利用分选所得脉冲的时序特征与重点目标信号脉冲重复间隔(pulse repetition interval,PRI)生成仿真信号;最后,计算仿真信号的互相关函数,基于相关度判断PRI参数是否匹配。仿真实验表明:所提方法明显提升了对重点目标信号的识别时效,能够应对存在噪声干扰和信号交叠的复杂信号环境,对局部脉冲参数丢失不敏感。 展开更多
关键词 雷达信号识别 基于密度的具有噪声的聚类算法 脉冲描述字 时序相关
下载PDF
结合载客热点和POI的出租车停车位划定方法
19
作者 邢雪 王菲 李佳楠 《吉林大学学报(信息科学版)》 CAS 2024年第1期93-99,共7页
针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚... 针对出租车随意停靠造成城市交通拥堵甚至交通事故的问题,利用成都实际区域的出租车GPS(Global Position System)数据和爬取的POI(Point of Interest)数据,使用DBSCAN(Density-Based Spatial Clustering of Application with Noise)聚类算法对上下客点进行聚类,得到出租车的载客热点,根据POI的类型划定载客热点区域的类型,对出租车不同时间的出行需求进行分析,进而划分出出租车的固定停车区域。研究结果表明,出租车固定停车区域的设定与出行者的出行需求有关,即将固定停车区域设置在出行者出行需求多的区域,可以满足出行者的不同出行需求。结合出租车载客热点和爬取POI数据划定固定停车区域的方法具有较高的实用性,可为城市交通安全方面提供理论和现实意义。 展开更多
关键词 上下客点 dbscan聚类算法 载客热点区域 POI数据分析 固定停车区域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部