首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处...首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处理过程及可行性。实验结果表明本文提出的方法可以大大提高交通事故黑点排查效率。展开更多
时空聚类(spatial-temporal density based spatial clustering of applications with noise,ST-DBSCAN)算法只能处理固定属性的时空数据,且其人为设定阈值的方法具有较大随机性会导致聚类结果不理想。基于ST-DBSCAN算法存在的不足,提...时空聚类(spatial-temporal density based spatial clustering of applications with noise,ST-DBSCAN)算法只能处理固定属性的时空数据,且其人为设定阈值的方法具有较大随机性会导致聚类结果不理想。基于ST-DBSCAN算法存在的不足,提出了一种改进的多属性时空聚类算法。改进后的新算法采用绘制时空对象距离频数柱状图来设定自适应阈值,通过引入Gower相似系数、Dice相似系数与欧几里德距离来构建多属性相似度模型,计算多个事务对象之间属性特征的相似度大小,从而将ST-DBSCAN时空聚类算法扩展到更多属性的时空数据聚类分析中。以北京市计算机行业职位招聘信息数据进行实验仿真,实验结果表明,新提出的阈值设定方法可以有效识别部分低密度簇,提高聚类的准确性和有效性;改进后的算法具有较好的普适性与包容性,能对多属性的时空数据进行很好的聚类分析。展开更多
针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空...针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空间,构建多个子空间,在子空间中利用加权K近邻匹配算法(Weighted K Nearest Neighbor,WKNN)估计出目标位置;然后利用DBSCAN对估计位置进行聚类以剔除异常点;最后结合概率模型确定最终估计位置。实验结果表明,基于DBSCAN的子空间匹配算法能有效剔除大误差点,提高蜂窝网室内定位系统的整体性能。展开更多
为了充分利用无线网络资源,提升无线网络质量,充分利用了DBSCAN(Density Based Spatial Clustering of Applications with Noise)算法的优点,提出基于划分DBSCAN算法的话务量异常小区的检测方法,并通过对现网大量话务数据的统计分析,找...为了充分利用无线网络资源,提升无线网络质量,充分利用了DBSCAN(Density Based Spatial Clustering of Applications with Noise)算法的优点,提出基于划分DBSCAN算法的话务量异常小区的检测方法,并通过对现网大量话务数据的统计分析,找出小区载频配置数和最佳话务量之间的关系。对话务量异常、拥塞率高的小区进行载频配置优化,并对城市小区网络优化有一定的指导意义。展开更多
为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密...为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题。在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响。通过高性能计算中心用户数据的实例验证了其可行性。实验结果表明,改进后的算法提高了用户分类的准确性和全面性。展开更多
基金福建省自然科学基金(the Natural Science Foundation of Fujian Province of China under Grant No.A0310008)福建省高新技术研究开放计划重点项目(No.2003H 043)
文摘首先对DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法进行了深入研究,分析了它的特点、存在的问题及改进思想,提出了基于DBSCAN方法的交通事故多发点段的排查方法及其改进思路,并且给出了实例以说明处理过程及可行性。实验结果表明本文提出的方法可以大大提高交通事故黑点排查效率。
文摘时空聚类(spatial-temporal density based spatial clustering of applications with noise,ST-DBSCAN)算法只能处理固定属性的时空数据,且其人为设定阈值的方法具有较大随机性会导致聚类结果不理想。基于ST-DBSCAN算法存在的不足,提出了一种改进的多属性时空聚类算法。改进后的新算法采用绘制时空对象距离频数柱状图来设定自适应阈值,通过引入Gower相似系数、Dice相似系数与欧几里德距离来构建多属性相似度模型,计算多个事务对象之间属性特征的相似度大小,从而将ST-DBSCAN时空聚类算法扩展到更多属性的时空数据聚类分析中。以北京市计算机行业职位招聘信息数据进行实验仿真,实验结果表明,新提出的阈值设定方法可以有效识别部分低密度簇,提高聚类的准确性和有效性;改进后的算法具有较好的普适性与包容性,能对多属性的时空数据进行很好的聚类分析。
文摘针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空间,构建多个子空间,在子空间中利用加权K近邻匹配算法(Weighted K Nearest Neighbor,WKNN)估计出目标位置;然后利用DBSCAN对估计位置进行聚类以剔除异常点;最后结合概率模型确定最终估计位置。实验结果表明,基于DBSCAN的子空间匹配算法能有效剔除大误差点,提高蜂窝网室内定位系统的整体性能。
文摘为了充分利用无线网络资源,提升无线网络质量,充分利用了DBSCAN(Density Based Spatial Clustering of Applications with Noise)算法的优点,提出基于划分DBSCAN算法的话务量异常小区的检测方法,并通过对现网大量话务数据的统计分析,找出小区载频配置数和最佳话务量之间的关系。对话务量异常、拥塞率高的小区进行载频配置优化,并对城市小区网络优化有一定的指导意义。
文摘为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题。在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响。通过高性能计算中心用户数据的实例验证了其可行性。实验结果表明,改进后的算法提高了用户分类的准确性和全面性。