DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and mea...DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.展开更多
A double silicon on insulator(DSOI) structure was introduced based on fully depleted SOI(FDSOI)technology.The circuit performance could be adjusted dynamically through the separate back gate electrodes applied to ...A double silicon on insulator(DSOI) structure was introduced based on fully depleted SOI(FDSOI)technology.The circuit performance could be adjusted dynamically through the separate back gate electrodes applied to N-channel and P-channel devices.Based on DSOI ring oscillator(OSC),this paper focused on the theoretical analysis and electrical test of how the OSC's frequency being influenced by the back gate electrodes(soi2n,soi2p).The testing results showed that the frequency and power consumption of OSC could change nearly linearly along with the back gate bias.According to the different requirements of the circuit designers,the circuit performance could be improved by positive soi2 n and negative soi2 p,and the power consumption could be reduced by negative soi2n and positive soi2p.The best compromise between performance and power consumption of the circuit could be achieved by appropriate back gate biasing.展开更多
To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX techno...To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX technology combined with the conventional CMOS technology is used to fabricate this kind of devices.Using this method,DSOI,SOI,and bulk MOSFETs are successfully integrated on a single chip.Test results show that the drain induced barrier lowering effect is suppressed.The breakdown voltage drain-to-source is greatly increased for DSOI devices due to the elimination of the floating-body effect.And the self-heating effect is also reduced and thus the reliability increased.At the same time,the advantage of SOI devices in speed is maintained.The technology makes it possible to integrate low voltage,low power,low speed SOI devices or high voltage,high power,high speed DSOI devices on one chip and it offers option for developing system-on-chip technology.展开更多
文摘DSOI,bulk Si and SOI MOSFETs are fabricated on the same die successfully using local oxygen implantation process.The thermal properties of the three kinds of devices are described and compared from simulation and measurement.Both simulation and measurement prove that DSOI MOSFETs have the advantage of much lower thermal resistance of substrate and suffer less severe self heating effect than their SOI counterparts. At the same time,the electrical advantages of SOI devices can stay.The thermal resistance of DSOI devices is very close to that of bulk devices and DSOI devices can keep this advantage into deep sub micron realm.
文摘A double silicon on insulator(DSOI) structure was introduced based on fully depleted SOI(FDSOI)technology.The circuit performance could be adjusted dynamically through the separate back gate electrodes applied to N-channel and P-channel devices.Based on DSOI ring oscillator(OSC),this paper focused on the theoretical analysis and electrical test of how the OSC's frequency being influenced by the back gate electrodes(soi2n,soi2p).The testing results showed that the frequency and power consumption of OSC could change nearly linearly along with the back gate bias.According to the different requirements of the circuit designers,the circuit performance could be improved by positive soi2 n and negative soi2 p,and the power consumption could be reduced by negative soi2n and positive soi2p.The best compromise between performance and power consumption of the circuit could be achieved by appropriate back gate biasing.
文摘To overcome the floating-body effect and self-heating effect of SOI devices,the drain and source on insulator (DSOI) structure is fabricated and tested.The low dose developed recently and low energy local SIMOX technology combined with the conventional CMOS technology is used to fabricate this kind of devices.Using this method,DSOI,SOI,and bulk MOSFETs are successfully integrated on a single chip.Test results show that the drain induced barrier lowering effect is suppressed.The breakdown voltage drain-to-source is greatly increased for DSOI devices due to the elimination of the floating-body effect.And the self-heating effect is also reduced and thus the reliability increased.At the same time,the advantage of SOI devices in speed is maintained.The technology makes it possible to integrate low voltage,low power,low speed SOI devices or high voltage,high power,high speed DSOI devices on one chip and it offers option for developing system-on-chip technology.