2维特征抽取方法(如2DPCA、2DLDA),因为其抽取特征的速度和识别率要比1维的方法好,所以在人脸识别中得到了广泛的应用。最近基于2DPCA又提出了对角主成份分析(diagonal principal component analysis,DiaPCA),该方法由于保持了图像的行...2维特征抽取方法(如2DPCA、2DLDA),因为其抽取特征的速度和识别率要比1维的方法好,所以在人脸识别中得到了广泛的应用。最近基于2DPCA又提出了对角主成份分析(diagonal principal component analysis,DiaPCA),该方法由于保持了图像的行变化和图像的列变化之间的相关性,从而克服了2DPCA仅能反映图像行之间的变化,而忽略了图像列之间变化的缺点。但是,由于DiaPCA并没在特征抽取中融入鉴别信息,同时2DLDA也具有与2DPCA同样的缺点,从而分别影响了DiaPCA与2DLDA两种方法的识别性能。针对这一问题,提出了一种对角线性鉴别分析(diagonal linear dicriminant analysis,DiaLDA)的新算法,该新算法是基于对角人脸图像来求解最优鉴别向量。该新算法在ORL和FERET人脸库进行了实验,并与PCA、Fisherface、DiaPCA、2DLDA等方法进行了比较。实验结果表明,该方法比其他方法的识别性能要好。展开更多
Low-dimensional feature representation with enhanced discriminatory power of paramount importance to face recognition systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disad...Low-dimensional feature representation with enhanced discriminatory power of paramount importance to face recognition systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the “small sample size” (SSS) problem which is often encountered in face recognition tasks. In this paper, we propose a new technique coined Relevance-Weighted Two Dimensional Linear Discriminant Analysis (RW2DLDA). Its over comes the singularity problem implicitly, while achieving efficiency. Moreover, a weight discriminant hyper plane is used in the between class scatter matrix, and RW method is used in the within class scatter matrix to weigh the information to resolve confusable data in these classes. Experiments on two well known facial databases show the effectiveness of the proposed method. Comparisons with other LDA-based methods show that our method improves the LDA classification performance.展开更多
文摘2维特征抽取方法(如2DPCA、2DLDA),因为其抽取特征的速度和识别率要比1维的方法好,所以在人脸识别中得到了广泛的应用。最近基于2DPCA又提出了对角主成份分析(diagonal principal component analysis,DiaPCA),该方法由于保持了图像的行变化和图像的列变化之间的相关性,从而克服了2DPCA仅能反映图像行之间的变化,而忽略了图像列之间变化的缺点。但是,由于DiaPCA并没在特征抽取中融入鉴别信息,同时2DLDA也具有与2DPCA同样的缺点,从而分别影响了DiaPCA与2DLDA两种方法的识别性能。针对这一问题,提出了一种对角线性鉴别分析(diagonal linear dicriminant analysis,DiaLDA)的新算法,该新算法是基于对角人脸图像来求解最优鉴别向量。该新算法在ORL和FERET人脸库进行了实验,并与PCA、Fisherface、DiaPCA、2DLDA等方法进行了比较。实验结果表明,该方法比其他方法的识别性能要好。
文摘Low-dimensional feature representation with enhanced discriminatory power of paramount importance to face recognition systems. Most of traditional linear discriminant analysis (LDA)-based methods suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the “small sample size” (SSS) problem which is often encountered in face recognition tasks. In this paper, we propose a new technique coined Relevance-Weighted Two Dimensional Linear Discriminant Analysis (RW2DLDA). Its over comes the singularity problem implicitly, while achieving efficiency. Moreover, a weight discriminant hyper plane is used in the between class scatter matrix, and RW method is used in the within class scatter matrix to weigh the information to resolve confusable data in these classes. Experiments on two well known facial databases show the effectiveness of the proposed method. Comparisons with other LDA-based methods show that our method improves the LDA classification performance.