期刊文献+

基于图像去模糊的改进Gabor与LSSVM的人脸识别

Face Recognition Method with Improved Gabor and Lssvm Based on Image Blur
下载PDF
导出
摘要 为有效解决人脸识别中二维Gabor的维数灾难,线性鉴别分析算法(LDA)的小样本问题和因拍摄不慎造成的图像模糊的问题,提出一种图像去模糊的改进Gabor和最小二乘支持向量机(LSSVM)相结合的新算法。首先用约束最小二乘方(CLS)对模糊的人脸图像去模糊,然后将DLDA和二维Gabor相融合进行降维处理,最后利用训练速度快,泛化能力强的LSSVM进行分类识别。并通过ORL和Yale人脸库来做对比验证,证明了此方法的高效性。 In order to effectively solve the problems of curse dimensionality of 2D Gabor, the small sample size of LDA and image blurring due to accidentally shooting in the face recognition, a new algorithm is proposed based on improved Gabor and LSSVM . The improved Gabor solved the problem of deblurring image. First the blurred facial image is dealed with constrained least squares, then reducing the dimensionality of the feature space is done by fusion of DLDA and 2D Gabor. Because the LSSVM has the advantage of fast training speed and strong generalization ability. Finally, we use the LSSVM for classification and recognition. The efficiency of the proposed method is demonstrated by comparative verification of the Yale and ORL face database.
出处 《电视技术》 北大核心 2015年第24期108-112,共5页 Video Engineering
基金 新疆维吾尔自治区科学基金项目(2015211C257)
关键词 GABOR特征 DLDA LSSVM CLS 人脸识别 Gabor wavelets DLDA LSSVM constrained least squares methods face recognition
  • 相关文献

参考文献16

  • 1GUPTA S, SAHOO O P, GOEL A, et al. A new optimized ap- proach to face recognition using eigenfaces [ J ]. Global Journal of Computer Science and Technology ,2010,10 ( 1 ) : 15-17. 被引量:1
  • 2YAN Y,ZHANG Y J. 1D correlation filter based class-dependence feature analysis for face recognition [ J ]. Pattern Recognition, 2008, 41 (12) :3834-3841. 被引量:1
  • 3LIAO S, SHEN D, CHUNG A C S. A markov random field group- wise registration framework for face recognition [ J ~. IEEE Trans. Pattern Analysis & Machine Intelligence, 2014,36 ( 4 ) : 657-669. 被引量:1
  • 4肖宿,韩国强.基于变量分离和加权最小二乘法的图像复原[J].计算机应用研究,2012,29(4):1584-1587. 被引量:7
  • 5VASKELAINEN L I. Constrained least-squares optimization in con- formal array antenna synthesis[ J]. IEEE Trans. Antennas & Propa- gation, 2007,55 ( 3 ) : 859 -867. 被引量:1
  • 6OUYANG A, LI K, ZHOU X, et al. Improved LDA and LVQ for face recognition[J].Applied Mathematics & Information Science,2014, 8(1L) : 301-309. 被引量:1
  • 7周维芳,赵玉刚,王世亮,唐红梅.基于Gabor小波和LDA的人脸识别算法研究[J].电视技术,2011,35(23):118-120. 被引量:4
  • 8HO H T, CHELLAPPA R. Pose-invariant face recognition using Markov random fields[ J]. IEEE Trans. Image Processing,2013,22 (4) : 1573-1584. 被引量:1
  • 9YANG S S, SIU S, HO C L. Analysis of the initial values in split- omplex backpropagation algorithm [ J ]. Neural Networks, 2008,19 (9) :1564-1573. 被引量:1
  • 10ZAIED M,SAID S,JEMAI O,et al. A novel approach for face rec- ognition based on fast learning algorithm and wavelet network theory [ J 1. International Journal of Wavelets, Multiresolution and Infor- mation Processing, 2011,9(6) : 923-945. 被引量:1

二级参考文献68

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部