以歧化松香为原料,经酰氯化、酯化、磷酸化、成盐等反应,合成4种可分解型松香基表面活性剂(Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ)。利用FTIR和NMR对其进行了结构表征,并考察了其表面和分解性能。结果表明,Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ的临界胶束浓度(...以歧化松香为原料,经酰氯化、酯化、磷酸化、成盐等反应,合成4种可分解型松香基表面活性剂(Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ)。利用FTIR和NMR对其进行了结构表征,并考察了其表面和分解性能。结果表明,Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ的临界胶束浓度(CMC)分别为4.69×10–3、5.15×10–3、2.65×10–3和1.71×10–3 mol/L,对应的表面张力(γCMC)分别为48.2、41.4、34.6和33.2 m N/m。Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ在乳化体系(石蜡/水)中分出10 m L水的时间分别为11、128、90和98 s,初始起泡高度分别为16.0、18.5、18.0和23.0 mm,5 min后泡沫高度变化依次为6.0、4.0、4.0和11.5 mm;松香酯表面活性剂Ⅱ具有优异的乳化性能,而松香磷酯表面活性剂SAA-Ⅳ具有优异的起泡性能。松香基酯表面活性剂Ⅰ和Ⅱ的浊点分别约为90和80℃,松香磷酯表面活性剂SAA-Ⅲ和SAA-Ⅳ的Krafft点分别在30-40℃和50-60℃,且浊点和Krafft点均随分子链的增长而增大。室温强酸条件下的酸水解实验表明,4种表面活性剂均具有可分解性。展开更多
In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove...In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.展开更多
In this paper, we introduce the class of extended Hamilton operators and study various properties of this class. We examine the decomposability of extended Hamilton operators. In addition, we prove that an extended Ha...In this paper, we introduce the class of extended Hamilton operators and study various properties of this class. We examine the decomposability of extended Hamilton operators. In addition, we prove that an extended Hamilton operator with property (δ) is subscalar. Finally, we consider Weyl type theorems of this class.展开更多
Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(...Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(β),decomposition property(δ)and Dunford’s property(C)and obtain the relationship of these properties between M_(C) and its entries.We explore how σ_(*)(M_(C))shrinks from σ_(*)(A)∪σ_(*)(B),where σ_(*)denotes σ_(β),σ_(δ),σ_(C),σ_(dec).In particular,we develop some sufficient conditions for equality σ_(*)(MC)=σ_(*)(A)∪σ_(*)(B).Besides,we consider the perturbation of these properties for MCand show that in perturbing with certain operators C the properties for MCkeeps with A,B.Some examples are given to illustrate our results.Furthermore,we study the decomposability for(0AB0).Finally,we give applications of decomposability for operator matrices.展开更多
文摘以歧化松香为原料,经酰氯化、酯化、磷酸化、成盐等反应,合成4种可分解型松香基表面活性剂(Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ)。利用FTIR和NMR对其进行了结构表征,并考察了其表面和分解性能。结果表明,Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ的临界胶束浓度(CMC)分别为4.69×10–3、5.15×10–3、2.65×10–3和1.71×10–3 mol/L,对应的表面张力(γCMC)分别为48.2、41.4、34.6和33.2 m N/m。Ⅰ、Ⅱ、SAA-Ⅲ、SAA-Ⅳ在乳化体系(石蜡/水)中分出10 m L水的时间分别为11、128、90和98 s,初始起泡高度分别为16.0、18.5、18.0和23.0 mm,5 min后泡沫高度变化依次为6.0、4.0、4.0和11.5 mm;松香酯表面活性剂Ⅱ具有优异的乳化性能,而松香磷酯表面活性剂SAA-Ⅳ具有优异的起泡性能。松香基酯表面活性剂Ⅰ和Ⅱ的浊点分别约为90和80℃,松香磷酯表面活性剂SAA-Ⅲ和SAA-Ⅳ的Krafft点分别在30-40℃和50-60℃,且浊点和Krafft点均随分子链的增长而增大。室温强酸条件下的酸水解实验表明,4种表面活性剂均具有可分解性。
基金Supported by the National Natural Science Foundation of China under Grant No.11601130 and 11761029the Natural Science Foundation of the Department of Education of Henan Province under Grant No.16A110033and 17A110005Doctoral Foundation of Henan Normal University No.qd15133
文摘In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.
基金Supported by the National Natural Science Foundation of China(Grant No.11601130)the Natural Science Foundation of the Department of Education of He’nan Province(Grant Nos.16A110033 and 17A110005)
文摘In this paper, we introduce the class of extended Hamilton operators and study various properties of this class. We examine the decomposability of extended Hamilton operators. In addition, we prove that an extended Hamilton operator with property (δ) is subscalar. Finally, we consider Weyl type theorems of this class.
基金Supported by National Natural Science Foundation of China(Grant No.11761029)Inner Mongolia Higher Education Science and Technology Research Project(Grant Nos.NJZY22323 and NJZY22324)Inner Mongolia Natural Science Foundation(Grant No.2018MS07020)。
文摘Let X and Y be Banach spaces.For A∈L(X),B∈L(Y),C∈L(Y,X),let MCbe the operator matrix defined on X⊕Y by M_(C)=(AC0B)∈L(X⊕Y).In this paper we investigate the decomposability for MC.We consider Bishop’s property(β),decomposition property(δ)and Dunford’s property(C)and obtain the relationship of these properties between M_(C) and its entries.We explore how σ_(*)(M_(C))shrinks from σ_(*)(A)∪σ_(*)(B),where σ_(*)denotes σ_(β),σ_(δ),σ_(C),σ_(dec).In particular,we develop some sufficient conditions for equality σ_(*)(MC)=σ_(*)(A)∪σ_(*)(B).Besides,we consider the perturbation of these properties for MCand show that in perturbing with certain operators C the properties for MCkeeps with A,B.Some examples are given to illustrate our results.Furthermore,we study the decomposability for(0AB0).Finally,we give applications of decomposability for operator matrices.