A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth ...A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth speed between the simulation and experimental data,and the effect of the length of the crystal on heat transfer and fluid flow was analyzed.The results showed that T_(max) increases and its location moves downward as the crystal length increases.The flow pattern in the melt does not change until the crystal grows to 900 mm.As the crystal length increases,the flow pattern in the first gas area only changes when the crystal length is less than 700 mm,but the flow pattern in the second area changes throughout the growth process.展开更多
Numerical simulation of the mixed convection induced by buoyancy, crystal rotation, and also unbalanced surface tension at the melt-gas interface is conducted by means of the finite volume method in the model of the C...Numerical simulation of the mixed convection induced by buoyancy, crystal rotation, and also unbalanced surface tension at the melt-gas interface is conducted by means of the finite volume method in the model of the Czochralski crystal growth. The role of Marangoni convection in the heat and mass transfer is investigated by the comparison of the models with and without surface tension included, and our results indicate that Marangoni convection plays an important role in the heat and mass transfer near the interface of melt and crystal, and also the convection structure.展开更多
基金supported by the Jiangsu Zhongli PV Technology Co.,Ltd
文摘A global analysis of heat transfer and fluid flow in a real Czochralski single silicon crystal furnace is developed using the FLUENT package.Good agreement was obtained for comparisons of the power and crystal growth speed between the simulation and experimental data,and the effect of the length of the crystal on heat transfer and fluid flow was analyzed.The results showed that T_(max) increases and its location moves downward as the crystal length increases.The flow pattern in the melt does not change until the crystal grows to 900 mm.As the crystal length increases,the flow pattern in the first gas area only changes when the crystal length is less than 700 mm,but the flow pattern in the second area changes throughout the growth process.
文摘Numerical simulation of the mixed convection induced by buoyancy, crystal rotation, and also unbalanced surface tension at the melt-gas interface is conducted by means of the finite volume method in the model of the Czochralski crystal growth. The role of Marangoni convection in the heat and mass transfer is investigated by the comparison of the models with and without surface tension included, and our results indicate that Marangoni convection plays an important role in the heat and mass transfer near the interface of melt and crystal, and also the convection structure.