为了实现接头载流量的准确计算,提出了一种基于ANSYS的高压交流电缆接头载流量确定方法.该方法以绝缘长期耐受温度为限制条件,利用接头轴向二维有限元仿真模型计算载流量.仿真结果表明,当对流散热环境和负荷都相同时,相同导体截面的电...为了实现接头载流量的准确计算,提出了一种基于ANSYS的高压交流电缆接头载流量确定方法.该方法以绝缘长期耐受温度为限制条件,利用接头轴向二维有限元仿真模型计算载流量.仿真结果表明,当对流散热环境和负荷都相同时,相同导体截面的电缆接头导体温度高于电缆本体的导体温度,接头的载流能力低于同导体截面电缆的载流能力.为验证仿真模型精度,设计了接头载流量实验平台,对不同负荷下110 k V电缆接头稳态温度分布进行了实测.仿真与实验结果的对比表明,当接头导体温度超过绝缘长期耐受温度时,应用接头轴向二维有限元仿真模型计算压接管处导体温度的误差不超过1.0%,仿真计算的准确度能够满足工程应用的需求.最后,采用二分法算得110 k V 630 mm^2电缆接头载流量为1220A,比相同导体截面电缆本体在相同环境条件下的载流量减少了17.79%.研究结果表明:采用接头轴向二维有限元仿真模型计算载流量是可行的.展开更多
文摘为了实现接头载流量的准确计算,提出了一种基于ANSYS的高压交流电缆接头载流量确定方法.该方法以绝缘长期耐受温度为限制条件,利用接头轴向二维有限元仿真模型计算载流量.仿真结果表明,当对流散热环境和负荷都相同时,相同导体截面的电缆接头导体温度高于电缆本体的导体温度,接头的载流能力低于同导体截面电缆的载流能力.为验证仿真模型精度,设计了接头载流量实验平台,对不同负荷下110 k V电缆接头稳态温度分布进行了实测.仿真与实验结果的对比表明,当接头导体温度超过绝缘长期耐受温度时,应用接头轴向二维有限元仿真模型计算压接管处导体温度的误差不超过1.0%,仿真计算的准确度能够满足工程应用的需求.最后,采用二分法算得110 k V 630 mm^2电缆接头载流量为1220A,比相同导体截面电缆本体在相同环境条件下的载流量减少了17.79%.研究结果表明:采用接头轴向二维有限元仿真模型计算载流量是可行的.
文摘在海上风电经交流海缆(submarine cable,SC)送出系统中,随着海上风电场规模逐步增大,交流海缆输电距离不断增加,海缆的充电功率可能会导致海上风电场并网点注入无功过剩,海缆沿线电压越限,海缆沿线载流量过大,海上升压站高压侧电压过高等问题。针对上述问题,文章建立了海上风电场经220 kV交流海缆送出系统的数学模型,结合无功补偿分层分区原则对风电送出系统进行解析计算,在给定海缆沿线电压电流限制条件下确定了所需补偿的海上高抗值;在陆上加装高抗与动态无功补偿装置(static var generator,SVG)使风电送出系统与陆上交流网的并网点无功功率交换为零,考虑接入并网点所需SVG装置容量最小,确定接入系统的陆上高抗值;结合国内某具体工程,具体计算了所推荐的无功配置方案。