In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
In this paper, we establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for a cubic Jensen-type functional equation,4f((3x+y)/4)+4f((x+3y)/4)=6f((x+y)/2)+f(x)+f(y...In this paper, we establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for a cubic Jensen-type functional equation,4f((3x+y)/4)+4f((x+3y)/4)=6f((x+y)/2)+f(x)+f(y),9f((2x+y/3)+9f((x+2y)/3)=16f((x+y)/2+f(x)+f(y)in the spirit of D. H. Hyers, S. M. Ulam, Th. M. Rassias and P. Gaevruta.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic sol...The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cyl...Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.展开更多
We obtain exact spatiotemporal similaritons to a (3+ l)-dimensional inhomogeneous nonlinear Schrodinger equation, which describes the propagation of optical pulses in a cubic-quintic nonlinearity medium with distri...We obtain exact spatiotemporal similaritons to a (3+ l)-dimensional inhomogeneous nonlinear Schrodinger equation, which describes the propagation of optical pulses in a cubic-quintic nonlinearity medium with distributed dispersion and gain. A one-to-one correspondence between such self-similar waves and solutions of the elliptic equation is found when a certain compatibility condition is satisfied. Based on exact solutions, we discuss evolutional behaviors of self-similar cnoidal waves and chirped similaritons in two kind of typicai soliton control systems. Moreover, the comparison between chirped similaritons and chirp-free solitons is given.展开更多
A new general equation of state is presented, which can be used to express not only common cubic equations of state, but also quartic equations of state and so on. Main advantage of the new equation over the previous ...A new general equation of state is presented, which can be used to express not only common cubic equations of state, but also quartic equations of state and so on. Main advantage of the new equation over the previous general equations is that it is in simple form, and is easy to manipulate mathematically.展开更多
The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper w...The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.展开更多
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金This work is supported by the Korea Research Foundation Grant funded by the Korea Government(MOEHRD)(KRF-2005-070-C00009)
文摘In this paper, we establish the general solution and the generalized Hyers-Ulam-Rassias stability problem for a cubic Jensen-type functional equation,4f((3x+y)/4)+4f((x+3y)/4)=6f((x+y)/2)+f(x)+f(y),9f((2x+y/3)+9f((x+2y)/3)=16f((x+y)/2+f(x)+f(y)in the spirit of D. H. Hyers, S. M. Ulam, Th. M. Rassias and P. Gaevruta.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
基金The project supported in part by Natural Science Foundation of Henan Province of China under Grant No. 2006110002 and the Science Foundation of Henan University of Science and Technology under Grant No. 2004ZD002
文摘The cubic-quintic nonlinear Schroedinger equation (CQNLS) plays important parts in the optical fiber and the nuclear hydrodynamics. By using the homogeneous balance principle, the bell type, kink type, algebraic solitary waves, and trigonometric traveling waves for the cubic-quintic nonlinear Schroedinger equation with variable coefficients (vCQNLS) are derived with the aid of a set of subsidiary high-order ordinary differential equations (sub-equations for short). The method used in this paper might help one to derive the exact solutions for the other high-order nonlinear evolution equations, and shows the new application of the homogeneous balance principle.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
基金The project supported by K.C. Wong Magna Fund in Ningbo University, National Natural Science Foundation of China under Grant Nos. 10747141 and 10735030;Zhejiang Provincial Natural Science Foundations of China under Grant No. 605408;Ningbo Natural Science Foundation under Grant Nos. 2007A610049 and 2006A610093;National Basic Research Program of China (973 Program 2007CB814800);Program for Changjiang Scholars and Innovative Research Team in University (IRTO734)
文摘Making use of the direct method proposed by Lou et al. and symbolic computation, finite symmetry transformation groups for a (2+ l)-dimensional cubic nonlinear Schrodinger (NLS) equation and its corresponding cylindrical NLS equations are presented. Nine related linear independent infinitesimal generators can be obtained from the finite symmetry transformation groups by restricting the arbitrary constants in infinitesimal forms. Some exact solutions are derived from a simple travelling wave solution.
基金Supported by the National Natural Science Foundation of China under Grant No.10974177by the Ministry of Science and Technology of China under Grant No.2010DFA04690
文摘We obtain exact spatiotemporal similaritons to a (3+ l)-dimensional inhomogeneous nonlinear Schrodinger equation, which describes the propagation of optical pulses in a cubic-quintic nonlinearity medium with distributed dispersion and gain. A one-to-one correspondence between such self-similar waves and solutions of the elliptic equation is found when a certain compatibility condition is satisfied. Based on exact solutions, we discuss evolutional behaviors of self-similar cnoidal waves and chirped similaritons in two kind of typicai soliton control systems. Moreover, the comparison between chirped similaritons and chirp-free solitons is given.
文摘A new general equation of state is presented, which can be used to express not only common cubic equations of state, but also quartic equations of state and so on. Main advantage of the new equation over the previous general equations is that it is in simple form, and is easy to manipulate mathematically.
文摘The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.