A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. B...A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.展开更多
In this paper,we derive rigorously a non-local cross-diffusion system from an interacting stochastic many-particle system in the whole space.The convergence is proved in the sense of probability by introducing an inte...In this paper,we derive rigorously a non-local cross-diffusion system from an interacting stochastic many-particle system in the whole space.The convergence is proved in the sense of probability by introducing an intermediate particle system with a mollified interaction potential,where the mollification is of algebraic scaling.The main idea of the proof is to study the time evolution of a stopped process and obtain a Gronwall type estimate by using Taylor's expansion around the limiting stochastic process.展开更多
The homogeneity-breaking instability of the periodic solutions triggered by Hopf bifurcations of a diffusive Gierer-Meinhart system is studied in this paper.Sufficient conditions on the diffusion coefficients and the ...The homogeneity-breaking instability of the periodic solutions triggered by Hopf bifurcations of a diffusive Gierer-Meinhart system is studied in this paper.Sufficient conditions on the diffusion coefficients and the cross diffusion coefficients were derived to guarantee the occurrence of the aforementioned homogeneity-breaking instability.展开更多
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Ho...We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.展开更多
基金Supported by the National Natural Science Foundation of China (10961017)"Qinglan" Talent Programof Lanzhou Jiaotong University (QL-05-20A)
文摘A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.
基金funding from the European Research Council (ERC)under the European Union's Horizon 2020 research and innovation programme,ERC Advanced Grant No.101018153support from the Austrian Science Fund (FWF) (Grants P33010,F65)supported by the NSFC (Grant No.12101305).
文摘In this paper,we derive rigorously a non-local cross-diffusion system from an interacting stochastic many-particle system in the whole space.The convergence is proved in the sense of probability by introducing an intermediate particle system with a mollified interaction potential,where the mollification is of algebraic scaling.The main idea of the proof is to study the time evolution of a stopped process and obtain a Gronwall type estimate by using Taylor's expansion around the limiting stochastic process.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.12061033,2020GG0130,2020MS04007,2020BS11,and NJZZ22286).
文摘The homogeneity-breaking instability of the periodic solutions triggered by Hopf bifurcations of a diffusive Gierer-Meinhart system is studied in this paper.Sufficient conditions on the diffusion coefficients and the cross diffusion coefficients were derived to guarantee the occurrence of the aforementioned homogeneity-breaking instability.
基金supported by National Natural Science Foundation of China(Grant No.11201380)the Fundamental Research Funds for the Central Universities(Grant No.XDJK2012B007)+2 种基金Doctor Fund of Southwest University(Grant No.SWU111021)Educational Fund of Southwest University(Grant No.2010JY053)National Research Foundation of Korea Grant funded by the Korean Government(Ministry of Education,Science and Technology)(Grant No.NRF-2011-357-C00006)
文摘We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.