A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treat...A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.展开更多
Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,whic...Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,which usually causes the formation of a thick iron oxide layer on the ZVI surface and hinders the efficient electron transfer to the contaminants.In this study,an alcohothermal strategy was employed for S-ZVI synthesis by the one-step reaction of iron powder with elemental sulfur.It is found that ferrous sulfide(FeS)with high purity and fine crystallization was formed on the ZVI surface,which is extremely favorable for electron transfer.Cr(Ⅵ)removal experiments confirm that the rate constant of SZVI synthesized by the alcohothermal method was 267.1-and 5.4-fold higher than those of un-sulfidated ZVI and aqueous-phase synthesized S-ZVI,respectively.Systematic characterizations proved that Cr(Ⅵ)was reduced and co-precipitated on S-ZVI in the form of a Fe(Ⅲ)/Cr(Ⅲ)/Cr(Ⅵ)composite,suggesting its environmental benignancy.展开更多
Cr(Ⅵ),one of the most hazardous metal pollutants,poses significant threats to the environment and human health.Herein,a novel MoS_(2) composite(MoS_(2)/PVP/PAM)modified by polyvinylpyrrolidone(PVP)and polyacrylamide(...Cr(Ⅵ),one of the most hazardous metal pollutants,poses significant threats to the environment and human health.Herein,a novel MoS_(2) composite(MoS_(2)/PVP/PAM)modified by polyvinylpyrrolidone(PVP)and polyacrylamide(PAM)was synthesized to enhance the removal of Cr(Ⅵ).Characterization analysis including SEM,XRD,FTIR,and XPS indicated that PVP and PAM could increase the interlayer spacing and the dispersibility of MoS_(2),and introduce pyrrolic N and amino functional groups.The batch experiments showed that MoS_(2)/PVP/PAM represented excellent Cr(Ⅵ)removal performance over a wide p H range,and exhibited a significantly higher maximum Cr(Ⅵ)adsorption capacity(274.73 mg/g,at p H 3.0,and 298 K)than pure MoS_(2).The adsorption of Cr(Ⅵ)followed Langmuir and pseudo-second-order kinetic model,which was a homogeneous monolayer chemisorption process.MoS_(2)/PVP/PAM showed stable removal of Cr(Ⅵ)in the presence of humic acid(HA),interfering cations and anions at different concentrations.Moreover,it had excellent selectivity for Cr(Ⅵ)(K_(d) value of 1.69×10^(7)m L/g)when coexisting with a variety of competing ions.Multiple characterization revealed that Cr(Ⅵ)was reduced to low toxicity Cr(Ⅲ)by Mo^(4+)and S^(2-),and then chelated on the surface of the adsorbent by pyrrolic N.This research expanded the design concept for MoS_(2) composites by demonstrating the potential of MoS_(2)/PVP/PAM as a promising material for selective elimination of Cr(Ⅵ)in water.展开更多
Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully est...Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC.展开更多
In order to remove hexavalent chromium(Cr(Ⅵ))from solutions efficiently,the mycelial pellets with a marine-derived fungus Aspergillus niger as a biosorbent were prepared.The effects of removal process parameters such...In order to remove hexavalent chromium(Cr(Ⅵ))from solutions efficiently,the mycelial pellets with a marine-derived fungus Aspergillus niger as a biosorbent were prepared.The effects of removal process parameters such as solution pH,initial Cr(Ⅵ)concentration and biomass concentration on Cr(Ⅵ)removal process were investigated.The results showed that Cr(Ⅵ)removal rate up to 100%could be achieved under optimized conditions,which indicated the excellent Cr(Ⅵ)removal performance of the Aspergillus niger pellets.As a more important point,the Cr(Ⅵ)removal mechanism was studied,and the results revealed that Cr(Ⅵ)removal was achieved in the adsorption-coupled reduction process.A little of Cr(Ⅵ)was reduced to less toxic trivalent chromium(Cr(Ⅲ))in solution,while some was absorbed on the surface of mycelial pellets.Then they may be reduced on the surface or transferred into cells and then be reduced.The marine-derived A.niger mycelial pellets show properties of easy preparation and separation and cost effectiveness,which are potential biosorbent and reductant in the treatment of trace chromate containing wastewater.展开更多
Cr(Ⅵ) is a common heavy metal ion, which will seriously harm human body and environment.Therefore, the removal of Cr(Ⅵ) has become an attractive topic.In this work, cinder was used as a raw material to synthesize a ...Cr(Ⅵ) is a common heavy metal ion, which will seriously harm human body and environment.Therefore, the removal of Cr(Ⅵ) has become an attractive topic.In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH)(γ-Al@Fe).The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(Ⅵ) was evaluated.The results showed that Cr(Ⅵ) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid(TA) under visible light.The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions(γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(Ⅵ)was completely reduced within 7 min.Besides, scavenger experiments and EPR proved that O_(2)^(·-) and CO_(2)^(·-) played a significant role in the photocatalytic reduction of Cr(Ⅵ).TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO_(2)^(·-).Dissolving O_(2) could react with electrons to generate O_(2)^(·-).This work discussed the performance and mechanism of photocatalytic reduction of Cr(Ⅵ) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.展开更多
Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of ...Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.展开更多
基金Funded by the Open/Innovation Fund of Hubei Three Gorges Laboratory(No.SK212002)。
文摘A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.
基金the National Key Research and Development Program of China(No.2019YFC1806203)for financial support。
文摘Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,which usually causes the formation of a thick iron oxide layer on the ZVI surface and hinders the efficient electron transfer to the contaminants.In this study,an alcohothermal strategy was employed for S-ZVI synthesis by the one-step reaction of iron powder with elemental sulfur.It is found that ferrous sulfide(FeS)with high purity and fine crystallization was formed on the ZVI surface,which is extremely favorable for electron transfer.Cr(Ⅵ)removal experiments confirm that the rate constant of SZVI synthesized by the alcohothermal method was 267.1-and 5.4-fold higher than those of un-sulfidated ZVI and aqueous-phase synthesized S-ZVI,respectively.Systematic characterizations proved that Cr(Ⅵ)was reduced and co-precipitated on S-ZVI in the form of a Fe(Ⅲ)/Cr(Ⅲ)/Cr(Ⅵ)composite,suggesting its environmental benignancy.
基金supported by the National Natural Science Foundation of China(No.51920105012)the National Key Research and Development Program of China(No.2021YFC3201403)。
文摘Cr(Ⅵ),one of the most hazardous metal pollutants,poses significant threats to the environment and human health.Herein,a novel MoS_(2) composite(MoS_(2)/PVP/PAM)modified by polyvinylpyrrolidone(PVP)and polyacrylamide(PAM)was synthesized to enhance the removal of Cr(Ⅵ).Characterization analysis including SEM,XRD,FTIR,and XPS indicated that PVP and PAM could increase the interlayer spacing and the dispersibility of MoS_(2),and introduce pyrrolic N and amino functional groups.The batch experiments showed that MoS_(2)/PVP/PAM represented excellent Cr(Ⅵ)removal performance over a wide p H range,and exhibited a significantly higher maximum Cr(Ⅵ)adsorption capacity(274.73 mg/g,at p H 3.0,and 298 K)than pure MoS_(2).The adsorption of Cr(Ⅵ)followed Langmuir and pseudo-second-order kinetic model,which was a homogeneous monolayer chemisorption process.MoS_(2)/PVP/PAM showed stable removal of Cr(Ⅵ)in the presence of humic acid(HA),interfering cations and anions at different concentrations.Moreover,it had excellent selectivity for Cr(Ⅵ)(K_(d) value of 1.69×10^(7)m L/g)when coexisting with a variety of competing ions.Multiple characterization revealed that Cr(Ⅵ)was reduced to low toxicity Cr(Ⅲ)by Mo^(4+)and S^(2-),and then chelated on the surface of the adsorbent by pyrrolic N.This research expanded the design concept for MoS_(2) composites by demonstrating the potential of MoS_(2)/PVP/PAM as a promising material for selective elimination of Cr(Ⅵ)in water.
基金This work was supported by the National Natural Science Foundation of China(No.21976153).
文摘Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC.
基金supported by the National Natural Science Foundation of China(21878263)。
文摘In order to remove hexavalent chromium(Cr(Ⅵ))from solutions efficiently,the mycelial pellets with a marine-derived fungus Aspergillus niger as a biosorbent were prepared.The effects of removal process parameters such as solution pH,initial Cr(Ⅵ)concentration and biomass concentration on Cr(Ⅵ)removal process were investigated.The results showed that Cr(Ⅵ)removal rate up to 100%could be achieved under optimized conditions,which indicated the excellent Cr(Ⅵ)removal performance of the Aspergillus niger pellets.As a more important point,the Cr(Ⅵ)removal mechanism was studied,and the results revealed that Cr(Ⅵ)removal was achieved in the adsorption-coupled reduction process.A little of Cr(Ⅵ)was reduced to less toxic trivalent chromium(Cr(Ⅲ))in solution,while some was absorbed on the surface of mycelial pellets.Then they may be reduced on the surface or transferred into cells and then be reduced.The marine-derived A.niger mycelial pellets show properties of easy preparation and separation and cost effectiveness,which are potential biosorbent and reductant in the treatment of trace chromate containing wastewater.
基金supported by the National Natural Science Foundation of China (Nos.51672077, 51872089)。
文摘Cr(Ⅵ) is a common heavy metal ion, which will seriously harm human body and environment.Therefore, the removal of Cr(Ⅵ) has become an attractive topic.In this work, cinder was used as a raw material to synthesize a nanoneedle material: γ-(AlOOH@FeOOH)(γ-Al@Fe).The physicochemical properties of γ-Al@Fe were thoroughly characterized, and its effectiveness as a catalyst for photocatalytic reduction of Cr(Ⅵ) was evaluated.The results showed that Cr(Ⅵ) could be efficiently reduced by γ-Al@Fe in the presence of tartaric acid(TA) under visible light.The variable factors on the reaction were investigated in detail, and the results showed that under optimal conditions(γ-Al@Fe 0.4 g/L, TA 0.6 g/L, pH 2), Cr(Ⅵ)was completely reduced within 7 min.Besides, scavenger experiments and EPR proved that O_(2)^(·-) and CO_(2)^(·-) played a significant role in the photocatalytic reduction of Cr(Ⅵ).TA acts as a sacrificial agent to trap the holes and generate strong reducing free radicals: CO_(2)^(·-).Dissolving O_(2) could react with electrons to generate O_(2)^(·-).This work discussed the performance and mechanism of photocatalytic reduction of Cr(Ⅵ) in detail, which provided a new idea for the resource utilization of solid waste and the treatment of heavy metal sewage.
基金financially supported by the major Project of the national science and technology of China (No. SQ2017YFGX010248)the Beijing Natural Science Foundation (No. 2172011)
文摘Niobium oxide nanowire-deposited carbon fiber(CF) samples were prepared using a hydrothermal method with amorphous Nb2O5·nH2O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction(XRD), energy-dispersive spectroscopy(EDS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), selected-area electron diffraction(SAED), UV–visible spectroscopy(UV–vis), N2 adsorption–desorption, Fourier transform infrared spectroscopy(FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined.Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb2O5/carbon fiber sample obtained after hydrothermal treatment at 160°C for 14 hr. The maximal Cr(VI) adsorption capacity of the Nb2O5 nanowire/CF sample was 115 mg/g. This Nb2O5/CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(Ⅵ) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1 hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area,abundant surface hydroxyl groups, and good UV-light absorption ability.