Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for fu...Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue(RCF).The rail gauge corner lubrication(RGCL)devices have been installed on the metro outer rail to mitigate its wear on the curved tracks.This paper presents an investigation into the influence ofRGCL on wheel/rail nonHertzian contact and rail surface RCF on the curves through numerical analysis.To this end,a metro vehicle-slab track interaction dynamics model is extended,in which an accurate wheel/rail non-Hertzian contact algorithm is implemented.The influence of RGCL on wheel/rail creep,contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated.The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves.It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.展开更多
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0710902)the National Natural Science Foundation of China(Grant Nos.51735012,52072317,and UJ9A20110)the State Key Laboratory of Traction Power(Grant No.202JTPL-T08).
文摘Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue(RCF).The rail gauge corner lubrication(RGCL)devices have been installed on the metro outer rail to mitigate its wear on the curved tracks.This paper presents an investigation into the influence ofRGCL on wheel/rail nonHertzian contact and rail surface RCF on the curves through numerical analysis.To this end,a metro vehicle-slab track interaction dynamics model is extended,in which an accurate wheel/rail non-Hertzian contact algorithm is implemented.The influence of RGCL on wheel/rail creep,contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated.The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves.It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.