A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with gl...A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with glutaraldehyde (GTA). Analysis by Fou- tier-transform inflared (FT-IR) spectroscopy showed that Schiff reactions occurred between amino and aldehyde groups. The swelling abil- ity of the hydrogel was investigated using a mass method, and it was observed to swell more in an acidic environment than in an alkaline en- vironment. The hydrogel's loading capacity of BTA was approximately 0.377 g·g ^-1, and its release speed was faster in an acidic environment than in an alkaline environment because of its swelling behavior. The corrosion inhibition ability of the intelligent inhibitor was tested by immersion and electrochemical methods. The results showed that after 4 h of immersion, the polarization resistance (Rp) value of copper with the intelligent inhibitor was approximately twice of that of copper with BTA, indicating that the intelligent inhibitor could effectively prevent copper from corroding.展开更多
基金supported by the National Natural Science Foundation of China (No. 51222106)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-14-011C1)
文摘A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with glutaraldehyde (GTA). Analysis by Fou- tier-transform inflared (FT-IR) spectroscopy showed that Schiff reactions occurred between amino and aldehyde groups. The swelling abil- ity of the hydrogel was investigated using a mass method, and it was observed to swell more in an acidic environment than in an alkaline en- vironment. The hydrogel's loading capacity of BTA was approximately 0.377 g·g ^-1, and its release speed was faster in an acidic environment than in an alkaline environment because of its swelling behavior. The corrosion inhibition ability of the intelligent inhibitor was tested by immersion and electrochemical methods. The results showed that after 4 h of immersion, the polarization resistance (Rp) value of copper with the intelligent inhibitor was approximately twice of that of copper with BTA, indicating that the intelligent inhibitor could effectively prevent copper from corroding.