In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise cal...In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise calculation of the natural characteristics for designing an attitude control law for the spacecraft while simultaneously suppressing the active vibration of its flexible appendages. We simplify the flexible spacecraft as a rigid-flexible coupling hub-beam system with tip mass and derive the system's governing equations of motion based on Hamilton's principle. By solving the linearized form of those equations with their associated boundary conditions, we obtain the frequencies as well as the corresponding GAMs of flexible spacecraft,which we use to discretize the equations of motion. Using this approach, we performed numerical simulations to investigate the system's global modes and assess the performance of the controller based on the GAM model. The results reveal that the GAM model can be used to directly calculate the exact global modes of SwLFAs and that the controller based on the discrete GAM model can achieve a control-index for a SwLFA in a shorter time with less input energy than other methods.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11472089)China Postdoctoral Science Foundation(Grant No.2017M622260)Shandong Provincial Natural Science Foundation,China(Grant No.ZR2016AP06)
文摘In this study, we used global analytical modeswfny(GAMs) to develop a rigid-flexible dynamic modeling approach for spacecraft with large flexible appendages(SwLFA). This approach enables the convenient and precise calculation of the natural characteristics for designing an attitude control law for the spacecraft while simultaneously suppressing the active vibration of its flexible appendages. We simplify the flexible spacecraft as a rigid-flexible coupling hub-beam system with tip mass and derive the system's governing equations of motion based on Hamilton's principle. By solving the linearized form of those equations with their associated boundary conditions, we obtain the frequencies as well as the corresponding GAMs of flexible spacecraft,which we use to discretize the equations of motion. Using this approach, we performed numerical simulations to investigate the system's global modes and assess the performance of the controller based on the GAM model. The results reveal that the GAM model can be used to directly calculate the exact global modes of SwLFAs and that the controller based on the discrete GAM model can achieve a control-index for a SwLFA in a shorter time with less input energy than other methods.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.