该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该...该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该系统额定值为380 V/35 kJ/7 kW,包括高温超导磁体及杜瓦、制冷单元、变流器、监控单元、箱体等主要组件及其它辅助部件,可吊装至集装箱车上移动到所需的位置,通过简单接线即可投入使用。针对该系统分别进行了电力系统动态模拟实验和现场试验。各项试验结果表明:该M-SMES具有四象限功率快速调节能力,具有良好的移动性和抗震性,现场运行性能稳定,能够抑制电力系统功率振荡,稳定系统电压,在电力系统中具有良好的应用前景。展开更多
超导储能-限流系统(SMES-FCL Superconducting magnetic energy storage-Fault current limiting)是集储能与限流为一体的新型超导电力装置。文中介绍了一种用于1MJ/0.5MW高温超导储能—限流系统的传导冷却型磁体,给出了其导冷结构的组...超导储能-限流系统(SMES-FCL Superconducting magnetic energy storage-Fault current limiting)是集储能与限流为一体的新型超导电力装置。文中介绍了一种用于1MJ/0.5MW高温超导储能—限流系统的传导冷却型磁体,给出了其导冷结构的组成,分析了磁体内部热量(主要包括线圈的交流损耗和导冷结构的涡流损耗)的产生。并采用有限元分析软件,计算得到了稳定运行的冷头温度和磁体温度分布情况。展开更多
A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of sup...A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of superconducting samples at cryogenic temperatures and intense magnetic fields. A compact cryostat with a two-stage GM cryocooler is designed and manufactured for the superconducting magnet. The magnet is composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational former and two Bi2Sr2CaCu20~ superconducting current leads. The two coils are connected in series and can be powered with a single power supply. In order to support the high stress and attain uniform thermal distribution in the superconducting magnet, a detailed finite element (FE) analysis has been performed. The results indicate that in the operating status the designed magnet system can sufficiently bear the electromagnetic forces and has a uniform temperature distribution.展开更多
Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested...Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.展开更多
高温超导储能(High Temperature Superconducting Magnetic Energy Storage,HTS-SMES)磁体装置可有效提高电力系统的稳定性、改善电能质量。储能磁体是储能装置的关键部分,为提高超导储能磁体的热稳定性,通常在超导磁体中增设铜导冷片...高温超导储能(High Temperature Superconducting Magnetic Energy Storage,HTS-SMES)磁体装置可有效提高电力系统的稳定性、改善电能质量。储能磁体是储能装置的关键部分,为提高超导储能磁体的热稳定性,通常在超导磁体中增设铜导冷片。磁体充放电时在导冷片上会产生涡流损耗,损耗的大小严重影响磁体的超导特性,因此降低导冷结构的涡流损耗是提高磁体热稳定性的关键因素。运用有限元法(FEM)分析导冷片上的涡流损耗,在Ansoft仿真软件三维瞬态场中模拟磁体充电过程中导冷片的涡流损耗,结果表明:充电模式下,完整导冷片涡流损耗为1.45W;沿径向开缺口处理后涡流损耗为0.107W;导冷片内环、中部、外环开齿槽后涡流损耗分别为0.49、0.41、0.1242W。由此可得,对于导冷片的开齿槽处理可显著降低涡流损耗,且内部开齿槽的效果最佳。展开更多
文摘该文介绍了中国自行研制的第一套移动式直接冷却高温超导磁储能系统(moveable conduction-cooled high temperature superconducting magnetic energy storage system,M-SMES)的工作原理、组件结构、性能实验、动模实验和现场试验。该系统额定值为380 V/35 kJ/7 kW,包括高温超导磁体及杜瓦、制冷单元、变流器、监控单元、箱体等主要组件及其它辅助部件,可吊装至集装箱车上移动到所需的位置,通过简单接线即可投入使用。针对该系统分别进行了电力系统动态模拟实验和现场试验。各项试验结果表明:该M-SMES具有四象限功率快速调节能力,具有良好的移动性和抗震性,现场运行性能稳定,能够抑制电力系统功率振荡,稳定系统电压,在电力系统中具有良好的应用前景。
文摘超导储能-限流系统(SMES-FCL Superconducting magnetic energy storage-Fault current limiting)是集储能与限流为一体的新型超导电力装置。文中介绍了一种用于1MJ/0.5MW高温超导储能—限流系统的传导冷却型磁体,给出了其导冷结构的组成,分析了磁体内部热量(主要包括线圈的交流损耗和导冷结构的涡流损耗)的产生。并采用有限元分析软件,计算得到了稳定运行的冷头温度和磁体温度分布情况。
基金Supported by National Natural Science Foundation of China(11327802,11302225)China Postdoctoral Science Foundation(2014M560820)National Scholarship Foundation of China(201404910172)
文摘A conduction-cooled superconducting magnet producing a transverse field of 4 T has been designed for a new generation multi-field coupling measurement system, which will be used to study the mechanical behavior of superconducting samples at cryogenic temperatures and intense magnetic fields. A compact cryostat with a two-stage GM cryocooler is designed and manufactured for the superconducting magnet. The magnet is composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational former and two Bi2Sr2CaCu20~ superconducting current leads. The two coils are connected in series and can be powered with a single power supply. In order to support the high stress and attain uniform thermal distribution in the superconducting magnet, a detailed finite element (FE) analysis has been performed. The results indicate that in the operating status the designed magnet system can sufficiently bear the electromagnetic forces and has a uniform temperature distribution.
文摘Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.
文摘高温超导储能(High Temperature Superconducting Magnetic Energy Storage,HTS-SMES)磁体装置可有效提高电力系统的稳定性、改善电能质量。储能磁体是储能装置的关键部分,为提高超导储能磁体的热稳定性,通常在超导磁体中增设铜导冷片。磁体充放电时在导冷片上会产生涡流损耗,损耗的大小严重影响磁体的超导特性,因此降低导冷结构的涡流损耗是提高磁体热稳定性的关键因素。运用有限元法(FEM)分析导冷片上的涡流损耗,在Ansoft仿真软件三维瞬态场中模拟磁体充电过程中导冷片的涡流损耗,结果表明:充电模式下,完整导冷片涡流损耗为1.45W;沿径向开缺口处理后涡流损耗为0.107W;导冷片内环、中部、外环开齿槽后涡流损耗分别为0.49、0.41、0.1242W。由此可得,对于导冷片的开齿槽处理可显著降低涡流损耗,且内部开齿槽的效果最佳。