随着RFID和传感器等数据采集设备的广泛使用及物联网的发展,产生了大量的事件类型的数据,原始的事件数据必须经过复杂事件处理(Complex Event Processing,CEP),才能变成具有丰富语意并对用户有价值的信息,复杂事件处理作为物联网智能处...随着RFID和传感器等数据采集设备的广泛使用及物联网的发展,产生了大量的事件类型的数据,原始的事件数据必须经过复杂事件处理(Complex Event Processing,CEP),才能变成具有丰富语意并对用户有价值的信息,复杂事件处理作为物联网智能处理层的重要组成部分,越来越受到重视.在实际应用中,许多事件流具有长过程的特点,要求相应的复杂事件处理需设置大时间窗口,相对于有限的内存,复杂事件处理面临新的挑战.现有的复杂事件处理均局限于内存进行,均未涉及外存的事件存储和检测.因此,现有的模型和系统均不能用于长过程复杂事件处理.为此,本文提出基于时间片划分的HTF(Hash structure by object ID in memory and Timeslice File in disk)事件实例存储策略和基于实例映射表的大时间窗口复杂事件检测方法,形成了面向长过程的复杂事件处理模型LPCEP(Complex Event Processing for Long Process).相关实验验证了模型用于长过程复杂事件处理的有效性和高效性.展开更多
文摘随着RFID和传感器等数据采集设备的广泛使用及物联网的发展,产生了大量的事件类型的数据,原始的事件数据必须经过复杂事件处理(Complex Event Processing,CEP),才能变成具有丰富语意并对用户有价值的信息,复杂事件处理作为物联网智能处理层的重要组成部分,越来越受到重视.在实际应用中,许多事件流具有长过程的特点,要求相应的复杂事件处理需设置大时间窗口,相对于有限的内存,复杂事件处理面临新的挑战.现有的复杂事件处理均局限于内存进行,均未涉及外存的事件存储和检测.因此,现有的模型和系统均不能用于长过程复杂事件处理.为此,本文提出基于时间片划分的HTF(Hash structure by object ID in memory and Timeslice File in disk)事件实例存储策略和基于实例映射表的大时间窗口复杂事件检测方法,形成了面向长过程的复杂事件处理模型LPCEP(Complex Event Processing for Long Process).相关实验验证了模型用于长过程复杂事件处理的有效性和高效性.