In this paper, we consider the differential equation f''+ Af'+ Bf = 0, where A(z) and B(z) ≡ 0are entire functions. Assume that A(z) has a finite deficient value, then we will give some conditions on B(z)...In this paper, we consider the differential equation f''+ Af'+ Bf = 0, where A(z) and B(z) ≡ 0are entire functions. Assume that A(z) has a finite deficient value, then we will give some conditions on B(z)which can guarantee that every solution f ≡ 0 of the equation has infinite order.展开更多
Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference...Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference equations of the following form {j=1∑nαj(z)f1(λj1)(z+cj)=R2(z,f2(z)),j=1∑nβj(z)f2(λj2)(z+cj)=R1(z,f1(z)). where λij (j = 1, 2,…, n; i = 1, 2) are finite non-negative integers, and cj (j = 1, 2,… , n) are distinct, nonzero complex numbers, αj(z), βj(z) (j = 1,2,… ,n) are small functions relative to fi(z) (i =1, 2) respectively, Ri(z, f(z)) (i = 1, 2) are rational in fi(z) (i =1, 2) with coefficients which are small functions of fi(z) (i = 1, 2) respectively.展开更多
In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter ...In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter and Laine's result concerning complex differential equations to the systems of algebraic differential equations.展开更多
In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra the...In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.展开更多
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
Let A(z)be an entire function withμ(A)<1/2 such that the equation f^(k)+A(z)f=0,where k≥2,has a solution f with λ(f)<μ(A),and suppose that A1=A+h,where h■0 is an entire function with ρ(h)<μ(A).Then g^(...Let A(z)be an entire function withμ(A)<1/2 such that the equation f^(k)+A(z)f=0,where k≥2,has a solution f with λ(f)<μ(A),and suppose that A1=A+h,where h■0 is an entire function with ρ(h)<μ(A).Then g^(k)+A1(z)g=0 does not have a solution g with λ(g)<∞.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire s...For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire solution f of P(z,f)+F(z)f^(s)=0,where P(z,f)is a differential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f). We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.展开更多
文摘In this paper, we consider the differential equation f''+ Af'+ Bf = 0, where A(z) and B(z) ≡ 0are entire functions. Assume that A(z) has a finite deficient value, then we will give some conditions on B(z)which can guarantee that every solution f ≡ 0 of the equation has infinite order.
基金supported by the National Natural Science Foundation of China(10471067)NSF of Guangdong Province(04010474)
文摘Applying Nevanlinna theory of the value distribution of meromorphic functions, we mainly study the growth and some other properties of meromorphic solutions of the type of system of complex differential and difference equations of the following form {j=1∑nαj(z)f1(λj1)(z+cj)=R2(z,f2(z)),j=1∑nβj(z)f2(λj2)(z+cj)=R1(z,f1(z)). where λij (j = 1, 2,…, n; i = 1, 2) are finite non-negative integers, and cj (j = 1, 2,… , n) are distinct, nonzero complex numbers, αj(z), βj(z) (j = 1,2,… ,n) are small functions relative to fi(z) (i =1, 2) respectively, Ri(z, f(z)) (i = 1, 2) are rational in fi(z) (i =1, 2) with coefficients which are small functions of fi(z) (i = 1, 2) respectively.
基金Project Supported by the Natural Science Foundation of China(10471065)the Natural Science Foundation of Guangdong Province(04010474)
文摘In this article, we mainly investigate the behavior of systems of complex differential equations when we add some condition to the quality of the solutions, and obtain an interesting result, which extends Gaekstatter and Laine's result concerning complex differential equations to the systems of algebraic differential equations.
文摘In this paper, we introduce a Hermite operational matrix collocation method for solving higher-order linear complex differential equations in rectangular or elliptic domains. We show that based on a linear algebra theorem, the use of different polynomials such as Hermite, Bessel and Taylor in polynomial collocation methods for solving differential equations leads to an equal solution, and the difference in the numerical results arises from the difference in the coefficient matrix of final linear systems of equations. Some numerical examples will also be given.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
基金supported by the National Natural Science Foundation of China(Nos.11571049,11501142,11861023)the Foundation of Science and Technology project of Guizhou Province of China(No.[2018]5769-05).
文摘Let A(z)be an entire function withμ(A)<1/2 such that the equation f^(k)+A(z)f=0,where k≥2,has a solution f with λ(f)<μ(A),and suppose that A1=A+h,where h■0 is an entire function with ρ(h)<μ(A).Then g^(k)+A1(z)g=0 does not have a solution g with λ(g)<∞.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金This work was supported by the National Natural Science Foundation of China(11771090,11901311)Natural Sciences Foundation of Shanghai(17ZR1402900).
文摘For entire or meromorphic function f,a value θ∈[0,2π)is called a Julia limiting direction if there is an unbounded sequence{z_(n)}in the Julia set satisfying limn→∞ arg z_(n)=θ.Our main result is on the entire solution f of P(z,f)+F(z)f^(s)=0,where P(z,f)is a differential polynomial of f with entire coefficients of growth smaller than that of the entire transcendental F,with the integer s being no more than the minimum degree of all differential monomials in P(z,f). We observe that Julia limiting directions of f partly come from the directions in which F grows quickly.