提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确...提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确定网络理想的社团结构。该算法有效地避免了K-means聚类算法对初始化选值敏感性的问题。通过Zachary Karate Club和College Football Network两个经典模型验证了该算法的可行性。展开更多
Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as net...Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as networks of web pages, research papers and Facebook users, people can only detect community structure from a certain source vertex with limited knowledge of the entire graph. The existing approaches do well in measuring the community quality, but they are largely dependent on source vertex and putting too strict policy in agglomerating new vertices. Moreover, they have predefined parameters which are difficult to obtain. This paper proposes a method to find local community structure by analyzing link similarity between the community and the vertex. Inspired by the fact that elements in the same community are more likely to share common links, we explore community structure heuristically by giving priority to vertices which have a high link similarity with the community. A three-phase process is also used for the sake of improving quality of community structure. Experimental results prove that our method performs effectively not only in computer-generated graphs but also in real-world graphs.展开更多
文摘提出了一种基于K-means聚类算法的复杂网络社团结构划分方法。算法基于Fortunato等人提出的边的信息中心度,定义了节点的关联度,并通过节点关联度矩阵来进行聚类中心的选择和节点聚类,从而将复杂网络划分成k个社团,然后通过模块度来确定网络理想的社团结构。该算法有效地避免了K-means聚类算法对初始化选值敏感性的问题。通过Zachary Karate Club和College Football Network两个经典模型验证了该算法的可行性。
基金supported by the National Natural Science Foundation of China under Grant No.61170193the Doctoral Program of the Ministry of Education of China under Grant No.20090172120035+2 种基金the Natural Science Foundation of Guangdong Province of China under Grant No.S2012010010613the Fundamental Research Funds for the Central Universities of South China University of Technology of China under Grant No.2012ZM0087the Pearl River Science & Technology Start Project of China under Grant No. 2012J2200007
文摘Exploring local community structure is an appealing problem that has drawn much recent attention in the area of social network analysis. As the complete information of network is often difficult to obtain, such as networks of web pages, research papers and Facebook users, people can only detect community structure from a certain source vertex with limited knowledge of the entire graph. The existing approaches do well in measuring the community quality, but they are largely dependent on source vertex and putting too strict policy in agglomerating new vertices. Moreover, they have predefined parameters which are difficult to obtain. This paper proposes a method to find local community structure by analyzing link similarity between the community and the vertex. Inspired by the fact that elements in the same community are more likely to share common links, we explore community structure heuristically by giving priority to vertices which have a high link similarity with the community. A three-phase process is also used for the sake of improving quality of community structure. Experimental results prove that our method performs effectively not only in computer-generated graphs but also in real-world graphs.