The minimum independent dominance set(MIDS)problem is an important version of the dominating set with some other applications.In this work,we present an improved master-apprentice evolutionary algorithm for solving th...The minimum independent dominance set(MIDS)problem is an important version of the dominating set with some other applications.In this work,we present an improved master-apprentice evolutionary algorithm for solving the MIDS problem based on a path-breaking strategy called MAE-PB.The proposed MAE-PB algorithm combines a construction function for the initial solution generation and candidate solution restarting.It is a multiple neighborhood-based local search algorithm that improves the quality of the solution using a path-breaking strategy for solution recombination based on master and apprentice solutions and a perturbation strategy for disturbing the solution when the algorithm cannot improve the solution quality within a certain number of steps.We show the competitiveness of the MAE-PB algorithm by presenting the computational results on classical benchmarks from the literature and a suite of massive graphs from real-world applications.The results show that the MAE-PB algorithm achieves high performance.In particular,for the classical benchmarks,the MAE-PB algorithm obtains the best-known results for seven instances,whereas for several massive graphs,it improves the best-known results for 62 instances.We investigate the proposed key ingredients to determine their impact on the performance of the proposed algorithm.展开更多
In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log ...In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.展开更多
The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solutio...The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61806050,61972063,61976050)the Fundamental Research Funds for the Central Universities(2412020FZ030,2412019ZD013,2412019FZ051)Jilin Science and Technology Association(QT202005).
文摘The minimum independent dominance set(MIDS)problem is an important version of the dominating set with some other applications.In this work,we present an improved master-apprentice evolutionary algorithm for solving the MIDS problem based on a path-breaking strategy called MAE-PB.The proposed MAE-PB algorithm combines a construction function for the initial solution generation and candidate solution restarting.It is a multiple neighborhood-based local search algorithm that improves the quality of the solution using a path-breaking strategy for solution recombination based on master and apprentice solutions and a perturbation strategy for disturbing the solution when the algorithm cannot improve the solution quality within a certain number of steps.We show the competitiveness of the MAE-PB algorithm by presenting the computational results on classical benchmarks from the literature and a suite of massive graphs from real-world applications.The results show that the MAE-PB algorithm achieves high performance.In particular,for the classical benchmarks,the MAE-PB algorithm obtains the best-known results for seven instances,whereas for several massive graphs,it improves the best-known results for 62 instances.We investigate the proposed key ingredients to determine their impact on the performance of the proposed algorithm.
基金This paper was supported by Ph. D. Foundation of State Education Commission of China.
文摘In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.
基金This work is supported partially by the National Natural Science Foundation of China under Grant No. 11301255, the Natural Science Foundation of Fujian Province of China under Grant No. 2016J01025, and the Program for New Century Excellent Talents in Fujian Province University.
文摘The minimum weight dominating set problem (MWDSP) is an NP-hard problem with a lot of real-world applications. Several heuristic algorithms have been presented to produce good quality solutions. However, the solution time of them grows very quickly as the size of the instance increases. In this paper, we propose a binary particle swarm optimization (FBPSO) for solving the MWDSP approximately. Based on the characteristic of MWDSP, this approach designs a new position updating rule to guide the search to a promising area. An iterated greedy tabu search is used to enhance the solution quality quickly. In addition, several stochastic strategies are employed to diversify the search and prevent premature convergence. These methods maintain a good balance between the exploration and the exploitation. Experimental studies on 106 groups of 1 060 instances show that FBPSO is able to identify near optimal solutions in a short running time. The average deviation between the solutions obtained by FBPSO and the best known solutions is 0.441%. Moreover, the average solution time of FBPSO is much less than that of other existing algorithms. In particular, with the increasing of instance size, the solution time of FBPSO grows much more slowly than that of other existing algorithms.